期刊文献+

Transformation of sulfamethazine during the chlorination disinfection process: Transformation,kinetics, and toxicology assessment 被引量:5

Transformation of sulfamethazine during the chlorination disinfection process: Transformation,kinetics, and toxicology assessment
原文传递
导出
摘要 Various disinfection byproducts(DBPs) form during the process of chlorination disinfection,posing potential threats to drinking water safety and human health. Sulfamethazine(SMT),the most commonly used and frequently detected veterinary antibiotic, was investigated in detail with regard to its transformation and kinetics in reactions with free available chlorine(FAC). Using liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry, several DBPs were identified based on different confidence levels, and a variety of reaction types, including desulfonation, S–N cleavage, hydroxylation, and chlorine substitution, were proposed. The kinetic experiments indicated that the reaction rate was FAC-and pH-dependent, and SMT exhibits low reactivity toward FAC in alkaline conditions. The DBPs exhibited a much higher acute toxicity than SMT, as estimated by quantitative structure activity relationship models. More importantly, we observed that the FAC-treated SMT reaction solution might increase the genotoxic potential due to the generation of DBPs. This investigation provides substantial new details related to the transformation of SMT in the chlorination disinfection process. Various disinfection byproducts(DBPs) form during the process of chlorination disinfection,posing potential threats to drinking water safety and human health. Sulfamethazine(SMT),the most commonly used and frequently detected veterinary antibiotic, was investigated in detail with regard to its transformation and kinetics in reactions with free available chlorine(FAC). Using liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry, several DBPs were identified based on different confidence levels, and a variety of reaction types, including desulfonation, S–N cleavage, hydroxylation, and chlorine substitution, were proposed. The kinetic experiments indicated that the reaction rate was FAC-and pH-dependent, and SMT exhibits low reactivity toward FAC in alkaline conditions. The DBPs exhibited a much higher acute toxicity than SMT, as estimated by quantitative structure activity relationship models. More importantly, we observed that the FAC-treated SMT reaction solution might increase the genotoxic potential due to the generation of DBPs. This investigation provides substantial new details related to the transformation of SMT in the chlorination disinfection process.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第2期48-56,共9页 环境科学学报(英文版)
基金 supported by the Capital Health Research and Development of Special (No.2014-1-3011)
关键词 LC-QTOF SULFAMETHAZINE TRANSFORMATION products CHLORINATION TOXICITY LC-QTOF Sulfamethazine Transformation products Chlorination Toxicity
  • 相关文献

同被引文献66

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部