期刊文献+

基于预测的LBSN兴趣点推荐算法 被引量:4

Prediction Based on Point-of-Interest Recommendation Algorithm in LBSN
下载PDF
导出
摘要 兴趣点(Point-Of-Interest,POI)推荐是基于位置的社交网络中(Location-Based Social Networks,LBSN)一种重要的个性化推荐功能.本文提出基于预测的兴趣点推荐算法.该算法根据LBSN中用户历史POI数据分布学习用户出行行为,利用变阶的马尔科夫算法根据当前位置预测用户未来到达POI的语义信息,最终推荐时考虑用户签到次数的差异为用户推荐N个具有高兴趣度的POI.实验结果表明:本文提出的算法在准确率和召回率上均高于两个对比算法,说明该算法提高了兴趣点推荐效果,并可以有效的推荐给用户下一个访问的兴趣点. Point-Of-Interest(POI)recommendation is an important personalized recommendation function in Location-Based Social Networks(LBSN).This paper proposes a prediction point based recommendation algorithm.The algorithm learns the user’s travel behavior according to the user history POI data distribution in the LBSN,and uses the variable Markov algorithm to predict the semantic information of the user’s future arrival POI according to the current location.The final recommendation takes into account the difference in the number of user sign-ups and recommends Nfor the user.Highly interesting POI.The experimental results show that the proposed algorithm is higher than the two comparison algorithms in accuracy and recall rate,which indicates that the algorithm improves the recommendation effect of interest points and can effectively recommend the next interest points for users.
作者 段宗涛 蔡丹丹 唐蕾 李菲菲 DUAN Zong-tao;CAI Dan-dan;TANG Lei;LI Fei-fei(School of Information Technology Changan University,Xi'an 710064,China)
出处 《微电子学与计算机》 北大核心 2019年第1期66-69,共4页 Microelectronics & Computer
基金 陕西省重点科技创新团队项目(2017KCT-29) 陕西省重点研发计划项目(2017GY-072 2018GY-022 2018GY-032 2018GY-136) 陕西省国际科技合作计划项目(2017KW-015) 陕西省工业科技攻关项目(2015GY002)
关键词 基于位置的社交网络 个性化推荐 位置预测 POI LBSN personalized recommendation location prediction POI
  • 相关文献

参考文献1

二级参考文献9

  • 1Scellato S, Noulas A, Mascolo C. Exploiting place features in link prediction on location-based social networks[C]//Proc of the 17th ACM SIGKDD International Conference on Knowl- edge Discovery and Data Mining, 2011 .. 1046-1054.
  • 2Ference G, Ye M, Lee W C. Location recommendation for out-of-town users in location-based social networks[C] // Proc of the 22nd ACM International Conference on Informa- tion ~ Knowledge Management,2013 : 721-726.
  • 3Ye M,Yin P, Lee W C, et al. Exploiting geographical influ- ence for collaborative point-of-interest recommendation[C]// Proc of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2011~ 325-334.
  • 4Wang Jing-jin. Research on personalized location recommen- dation based on position social network[D]. Xiamen..Xiamen university, 2014 ~ 1-73. (in Chinese).
  • 5Shi Y,Serdyukov P, Hanialic A, et al. Personalized landmark recommendation based on Geotags from photo sharing sites [C]//Proc of ICWSM' 11,2011 : 622-625.
  • 6SeellatoS, Masco[o C. Measuring user activity on an online location-based social network[C3 ff Proc of 2011 IEEE Con- ference on Computer Communications Workshops, 2011 : 918- 923.
  • 7Jeh G, Widom J. SimRank: A measure of structural-context similarityff Proc of SIGKDD' 02,2002 : 538-543.
  • 8Distance Calculation Algorithms[EB/OL]. [2013-05-08]. ht- tp://www, ga. gov. au/earth-monitoring/geodesy/geodetic- techniques/distance-calculation-algorithms, htmh.
  • 9Herlocker J L,Konstan J A, Terveen L G,et al. Evaluating collaborative fihering recommender systems [J ]. ACM Transactions on Information Systems ( TOIS), 2004,22 ( 1 ) : 5-53.

共引文献5

同被引文献42

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部