摘要
针对传统数据拟合方法存在依赖用户经验,需预先确定估计拟合函数等缺点,提出一种基于蚁群优化最小二乘支持向量回归机(ACO-LSSVR)的数据拟合方法。该方法采用蚁群优化(ACO)对最小二乘支持向量回归机(LSSVR)的参数进行优化,获取最优参数,从而建立数据拟合模型。将该方法与传统回归拟合方法用于核工程的2个测量数据拟合实例中,得到堆芯功率曲线和熔融液滴在冷却剂中运动特性曲线,将2条曲线的拟合结果进行了比较。结果表明,ACO-LSSVR具有较高的拟合精度且无需对数据分段确定拟合函数。
Aiming at the disadvantages of traditional data fitting methods,such as relying on the user's experience and needing to predetermine the estimated fitting function,a data fitting method based on Ant colony least squares support vector regression(ACO-LSSVR)is proposed. The method uses ant colony optimization (ACO)to optimize the parameters of least.squares support vector regression machine (LSSVR)and obtain the optimal parameters to establish a data fitting model.This method is used to fit the measured data of nuclear engineering with the traditional regression fitting method.The core power curve and the melt droplet movement characteristic curve in coolant are obtained.The fitting results of the two curves are compared.Results show that ACO-LSSVR has high fitting accuracy and does not need to determine the fitting function of data segments.
作者
蒋波涛
Hines J.Wesley
赵福宇
Jiang Botao;Hines J.Wesley;Zhao Fuyu(School of Electronics and Information,Xi'an Polytechnic University,Xi'an,710048,China;Department of Nuclear Engineering,University of Tennessee,Knoxville,37996,USA;School of Nuclear Science and Technology,Xi'an Jiaotong University,Xi'an,710049,China)
出处
《核动力工程》
EI
CAS
CSCD
北大核心
2018年第6期156-160,共5页
Nuclear Power Engineering
基金
国家自然科学基金青年项目(11705135)
中国国家留学基金资助项目(201508610045)
陕西省教育厅专项科研计划项目(15JK1297)
西安工程大学博士科研启动基金项目(BS1339)