期刊文献+

基于多历史覆冰过程的输电线路覆冰增长预测 被引量:6

Prediction of Icing Growth of Transmission Lines Based on Multi-history Icing Process
下载PDF
导出
摘要 应用粒子群优化(PSO)和最小二乘支持向量机(LS-SVM)算法对各历史覆冰过程建立预测模型,利用皮尔逊相关系数法对历史覆冰过程进行相似性筛选,采用径向基神经网络(RBF)建立多历史覆冰过程的覆冰增长率预测模型.实例计算表明,与传统的单历史覆冰过程预测方法相比,基于多历史覆冰过程的输电线路覆冰增长预测具有更好的精度. Particle swarm optimization (PSO)and least squares support vector machine (LS-SVM)algorithm are applied to predict the icing process,The matching mechanism of similar historical icing process was constructed by Pearson correlation coefficient method.Radial basis function neural network (RBF)is applied to establish a prediction model of icing growth rate in multi period icing process to obtain prediction data of icing thickness.A case study shows that the prediction method of icing growth on transmission line based on multi history icing process has better accuracy compared with the traditional single history icing process prediction method.
作者 翁永春 祝一帆 孟浪 王辉 张学锋 沈彪 Weng Yongchun;Zhu Yifan;Meng Lang;Wang Hui;Zhang Xuefeng;Shen Biao(State Grid Hubei Electric Power Company Maintenance Branch,Yichang 443002,China;Shiyan Power Supply Company,State Grid Hubei Electric Power Co.,Ltd.,Shiyan 442000,China)
出处 《三峡大学学报(自然科学版)》 CAS 北大核心 2019年第1期71-75,共5页 Journal of China Three Gorges University:Natural Sciences
基金 电网环境保护国家重点实验室开放基金项目(GYW51201700590)
关键词 输电线路 覆冰预测 PSO LS—SVM 皮尔逊相关系数法 RBF神经网络 transmission line multi historical icing prediction particle swarm optimization(PSO) LS-SVM Pearson correlation coefficient method RBF neural network
  • 相关文献

参考文献8

二级参考文献87

共引文献485

同被引文献70

引证文献6

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部