摘要
延迟微分方程在科学与工程等多个领域中有着广泛应用.本文考虑延迟抛物型方程的时间逼近.首先证明延迟抛物型方程二阶变步长BDF方法的稳定性,进而通过重构获得更高阶的数值逼近,由此获得二阶变步长BDF方法的后验误差估计.
Parabolic equations with delay has been widely appeared in scientific and engineering fields.In this paper we consider the time approximation of parabolic equations with delay.Firstly,we prove the stability of variable step--size BDF2 method for parabolic equations with delay.Then,we derive a higher order numerical approximation by reconstruction.Finally,we obtain a posteriori estimates of variable step--size BDF2 method for the equations.
作者
王为
王晚生
Wang Wei;Wang Wansheng(SchooI of Mathematics and Statistics,Changsha University of Science and Technology,Changsha 410114,China)
出处
《数学理论与应用》
2017年第3期26-37,共12页
Mathematical Theory and Applications
关键词
延迟微分方程
稳定性
重构
后验误差估计
BDF方法
Parabolic equation with delay
Stability analysis
Reconstruction
Posteriori error estimate BDF method