摘要
基于F指标的特征最大化的GNG聚类方法,对科学学研究文献文本进行内容分析,绘制了中国科学学近40年的研究主题结构图谱,并附以论文发表时间和作者辅助信息的外生标签梳理出中国科学学研究主题的变迁。这种结合了F指标特征最大化无监督学习方法的分析结果显示科学学研究在近40年逐渐走向成熟,从学科一般属性探讨转向相关学科与知识结构分析,从定性分析转向偏重于定量分析和可视化分析,从科学的一般社会功能研究转向更为具体的经济功能和战略功能研究。
Based on the unsupervised combination of GNG clustering with feature maximization, this paper analyses the contents of the academic journal papers in Science of Science in China, and constructs the map of the research topic structure in the last 40 years. Furthermore, it highlights the topic evolution by the exploitation of the publication time and makes use of the author’s information for the sake of clarifying topics content. The obtained results interestingly show that the Chinese Science of Science has gradually become mature in the last 40 years, turning from the general nature of the discipline to the relative disciplines and knowledge structure analysis, from the qualitative analysis to the quantitative and visual analysis, and from the general social function research of science to more specific economic function and strategic function studies.
作者
陈悦
Jean-Charles Lamirel
刘则渊
CHEN Yue;Jean-Charles Lamirel;LIU Zeyuan(Institute of Science of Science and S&T Management &WISE Lab,Dalian University of Technology,Dalian 116085,China;Synalp-Team-LORIA,University of Strasbourg,Strasbourg 67000,France)
出处
《科学学与科学技术管理》
CSSCI
CSCD
北大核心
2018年第12期28-45,共18页
Science of Science and Management of S.& T.
基金
大连理工大学《科学学原理》精品课程建设(20160916).
关键词
中国科学学
主题变迁
F指标
无监督学习
Science of Science in China
topic evolution
feature maximization
unsupervised learning