摘要
The first(namely, inner) fission barriers for even-A N = 152 nuclei have been studied systematically in the framework of macroscopic-microscopic model by means of potential energy surface(PES) calculations in the threedimensional(β_(2, γ), β_4) deformation space. Their collective properties, such as ground-state deformations, are compared with previous calculations and available observations, showing a consistent trend. In addition, it has been found that the microscopic shell correction energy plays an important role on surviving fission in these N = 152 deformed shell nuclei. The inclusion of non-axial symmetric degree of freedom γ will pull the fission barrier down more significantly with respect to the calculation involving in hexadecapole deformation β_4. Furthermore, the calculated Woods-Saxon(WS) single particle levels indicate that the large microscopic shell correction energies due to low level densities may be responsible for such a reduction on the inner fission barrier.
The first(namely, inner) fission barriers for even-A N = 152 nuclei have been studied systematically in the framework of macroscopic-microscopic model by means of potential energy surface(PES) calculations in the threedimensional(β_(2, γ), β_4) deformation space. Their collective properties, such as ground-state deformations, are compared with previous calculations and available observations, showing a consistent trend. In addition, it has been found that the microscopic shell correction energy plays an important role on surviving fission in these N = 152 deformed shell nuclei. The inclusion of non-axial symmetric degree of freedom γ will pull the fission barrier down more significantly with respect to the calculation involving in hexadecapole deformation β_4. Furthermore, the calculated Woods-Saxon(WS) single particle levels indicate that the large microscopic shell correction energies due to low level densities may be responsible for such a reduction on the inner fission barrier.
基金
Supported by the National Natural Science Foundation of China under Grant No.11675148
the Project of Youth Backbone Teachers of Colleges and Universities of Henan Province under Grant No.2017GGJS008
the Foundation and Advanced Technology Research Program of Henan Province under Grant No.162300410222
the Outstanding Young Talent Research Fund of Zhengzhou University under Grant No.1521317002
the Physics Research and Development Program of Zhengzhou University under Grant No.32410017