期刊文献+

Unusual one-way edge state in acoustic gyroscopic continuum 被引量:1

Unusual one-way edge state in acoustic gyroscopic continuum
原文传递
导出
摘要 Unusual one-way edge states have been observed in composite structures composed of periodic lattices loaded with gyroscopes.Here, we provide a continuum-mechanics understanding to the one-way edge state by formulating surface state equations of acoustic gyroscopic mediums with Hermite mass density tensor. We discover that the unidirectional edge effect arises from nontrivial off-diagonal components of Hermite densities, which causes the symmetric breaking of surface wave propagation towards forward and backward directions. Theoretical predictions on the velocity and decay length of surface waves coincide excellently with numerical simulations. The unidirectional edge state in a two-interface gyroscopic medium is also analyzed.Due to the rotational symmetry in geometry, the unidirectional edge state on one interface is able to prevent itself from the coupling to surface waves on the other interface regardless of the slab thickness. With these anomalous effects, surface waves residing on gyroscopic mediums can flow around the edge defects without back-scatterings, or can be split into two beams of equal energy magnitudes. Our findings may make a bridge that would help to reach the design of non-reciprocal composite materials via an effective medium approach. Unusual one-way edge states have been observed in composite structures composed of periodic lattices loaded with gyroscopes.Here, we provide a continuum-mechanics understanding to the one-way edge state by formulating surface state equations of acoustic gyroscopic mediums with Hermite mass density tensor. We discover that the unidirectional edge effect arises from nontrivial off-diagonal components of Hermite densities, which causes the symmetric breaking of surface wave propagation towards forward and backward directions. Theoretical predictions on the velocity and decay length of surface waves coincide excellently with numerical simulations. The unidirectional edge state in a two-interface gyroscopic medium is also analyzed.Due to the rotational symmetry in geometry, the unidirectional edge state on one interface is able to prevent itself from the coupling to surface waves on the other interface regardless of the slab thickness. With these anomalous effects, surface waves residing on gyroscopic mediums can flow around the edge defects without back-scatterings, or can be split into two beams of equal energy magnitudes. Our findings may make a bridge that would help to reach the design of non-reciprocal composite materials via an effective medium approach.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2019年第1期76-82,共7页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 11622215, 11572039, and 11521062) the "111" Project (Grant No. B16003)
关键词 gyroscopic MEDIUM one-way EDGE state QUANTUM HALL effect gyroscopic medium one-way edge state quantum Hall effect
  • 相关文献

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部