期刊文献+

Silurian integrative stratigraphy and timescale of China 被引量:5

Silurian integrative stratigraphy and timescale of China
原文传递
导出
摘要 Silurian is a period with the shortest duration in Phanerozoic except for the Neogene and Quaternary. It represents an important and unique interval when the biotic diversity recovered quickly after the end-Ordovician mass extinction, different paleoplates or terranes conjoined, big oceans disappeared or narrowed, climate and sea level changed frequently, global biotic provincialism became weaker, some primitive plants started to occupy the land. Silurian is also the first system of which all the chronostratigraphic stratotypes(i.e. the GSSPs) including four series and seven stages were established by the International Subcommission on Silurian Stratigraphy(ISSS). Nonetheless, during the post-GSSP studies conducted by ISSS in the middle1980 s, some Silurian GSSPs were found to have some congenital defects such as no index fossils available that hinder the high resolution subdivision and correlation on a regional or global scale. In this paper, based on the latest development of Silurian study in China, the progress in biostratigraphy, chronostratigraphy, event stratigraphy(such as facies differentiation, heterochrony of black shales, marine red beds, carbonate rocks and reefs), chemostratigraphy, and tectonic stratigraphy(e.g., widespread of the late Silurian rocks in South China and its tectonic implication) are systematically summarized. Some existing problems and the areas to be focused in future work are also discussed. It is suitable for chronostratigraphic study to concentrate not only on the boundary but also doing multidisciplinary analysis on the biotic, chemical, magnetic, environmental, and chronologic aspects, in order to enhance the reliability and the potential for regional and global correlation of a certain GSSP.Some important achievements are expected in these areas in the Silurian study in China:(1) ecostratigraphy and basin analysis of the Llandovery, and the correlation of integrative stratigraphy with a high resolution;(2) establishment of the Wenlock to Pridoli chronostratigraphic framework;(3) the chemo-and magnetic stratigraphy and the age of some key intervals and horizons;(4)further investigation on paleogeography and plate tectonics; and(5) origin and early evolution of the terrestrial ecosystem. Some new breakthroughs might occur in the restudy on some of those problematic GSSPs of some particular series and stages. Silurian is a period with the shortest duration in Phanerozoic except for the Neogene and Quaternary. It represents an important and unique interval when the biotic diversity recovered quickly after the end-Ordovician mass extinction, different paleoplates or terranes conjoined, big oceans disappeared or narrowed, climate and sea level changed frequently, global biotic provincialism became weaker, some primitive plants started to occupy the land. Silurian is also the first system of which all the chronostratigraphic stratotypes(i.e. the GSSPs) including four series and seven stages were established by the International Subcommission on Silurian Stratigraphy(ISSS). Nonetheless, during the post-GSSP studies conducted by ISSS in the middle1980 s, some Silurian GSSPs were found to have some congenital defects such as no index fossils available that hinder the high resolution subdivision and correlation on a regional or global scale. In this paper, based on the latest development of Silurian study in China, the progress in biostratigraphy, chronostratigraphy, event stratigraphy(such as facies differentiation, heterochrony of black shales, marine red beds, carbonate rocks and reefs), chemostratigraphy, and tectonic stratigraphy(e.g., widespread of the late Silurian rocks in South China and its tectonic implication) are systematically summarized. Some existing problems and the areas to be focused in future work are also discussed. It is suitable for chronostratigraphic study to concentrate not only on the boundary but also doing multidisciplinary analysis on the biotic, chemical, magnetic, environmental, and chronologic aspects, in order to enhance the reliability and the potential for regional and global correlation of a certain GSSP.Some important achievements are expected in these areas in the Silurian study in China:(1) ecostratigraphy and basin analysis of the Llandovery, and the correlation of integrative stratigraphy with a high resolution;(2) establishment of the Wenlock to Pridoli chronostratigraphic framework;(3) the chemo-and magnetic stratigraphy and the age of some key intervals and horizons;(4)further investigation on paleogeography and plate tectonics; and(5) origin and early evolution of the terrestrial ecosystem. Some new breakthroughs might occur in the restudy on some of those problematic GSSPs of some particular series and stages.
出处 《Science China Earth Sciences》 SCIE EI CAS CSCD 2019年第1期89-111,共23页 中国科学(地球科学英文版)
基金 supported by the Chinese Academy of Sciences (Grant Nos. XDPB05, XDB26000000) the National Natural Science Foundation of China (Grant Nos. 41530103, 41521061, 41290260)
关键词 SILURIAN BIOSTRATIGRAPHY CHRONOSTRATIGRAPHY CHEMOSTRATIGRAPHY Black shales Shallow marine red beds PALEOGEOGRAPHY Sedimentary HIATUS Silurian Biostratigraphy Chronostratigraphy Chemostratigraphy Black shales Shallow marine red beds Paleogeography Sedimentary hiatus
  • 相关文献

参考文献37

二级参考文献588

共引文献349

同被引文献74

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部