期刊文献+

隐半马尔科夫市场下投资组合的动态决策问题(英文)

Dynamic Portfolio Decision Under the Hidden Semi-Markov Market
下载PDF
导出
摘要 在长期投资组合中,既要考虑金融资产自身的价格波动风险,又要关注宏观经济环境变化及通胀风险对各资产的影响.为此,本文建立宏观经济环境服从隐半马尔科夫链的金融市场,由通胀指数债券、银行存款和普通股票构成投资组合.由期望效用最大化构建随机控制模型,考虑到该隐半马尔科夫市场的不完备性,进一步将该投资组合问题视作部分信息的随机控制问题,并利用隐半马尔科夫滤波将部分信息控制问题转化问完全信息问题,得到解的存在唯一性.本文最后给出若干数值模拟结果,结果显示本文建立的模型优于普通市场的模型. In a long-term investment process, we need to consider the financial risk of asset itself, and the influence on portfolio taken by economic environment and inflation risk.A dynamic decision of a portfolio in a hidden semi-Markov model(HSMM) is investigated in this paper. We construct a financial market in which the macroeconomic environment is driven by a hidden semi-Markov chain. In this market, there is an inflation index bond, a bank account and stock. A stochastic control problem by maximizing the expected utility is studied. Considering the market is incomplete, we regard this problem as a stochastic optimal control with partial information one. In order to solve it, HSMM-filtering is proposed. The partial information problem is converted into a complete one. By using the dynamic programming approach, a regime-switch Hamilton-Jacobi-Bellman(HJB) is derived. At last, numerical and sensitivity analysis are provided. From the numerical results, the model under HSMM performs better than the traditional portfolio model.
作者 何其祥 HE Qixiang(School of Mathematics,Shanghai University of Finance and Economics, Shanghai 200433,China;Zhejiang College,Shanghai University of Finance and Economics,Jinhua 321013,China)
出处 《应用数学》 CSCD 北大核心 2019年第1期45-62,共18页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(11671097)
关键词 长期投资组合 隐半马尔科夫链 最优随机控制 Long-term portfolio Hidden seme-Markov chain Optimal stochastic control
  • 相关文献

参考文献2

二级参考文献13

  • 1杨招军.部分信息下极大化终止时刻期望效用[J].控制理论与应用,2005,22(5):708-712. 被引量:8
  • 2LAKNER P. Utility maximization with partical information[J]. Stochastic Process Appl, 1995,56:247-273.
  • 3PHAM H. Mean-variance hedging under partial observation[J]. Theoretical and Applied Finance,2001,4:263-284.
  • 4BRENDLE Simon. Portfolio selection under incomplete information[J]. Stochastic Processes and Their Applications, 2006,116:701-723.
  • 5KLEIN M. Investment timing under incomplete information[J]. Math oper res, 2009,34(2):249-254.
  • 6RUDIGER Frey. Portfolio optimization under partial information with expert opinions [D]. Leipzig : Department of Mathematics, University of Leipzig, 2011,1-17.
  • 7CALLEGARO G,DI Masi G, RUNGGALDIER W. Portfolio optimization in discontinuous markets under incomplete ionformation[J].sia-Pat Financ Mark, 2006,13 : 373-394.
  • 8BFIHLMANN H. An eeonomie premium prineiple[J]. Astin Bulletin, 1980,11:52-60.
  • 9FLEMING W H,SONER H M. Controlled markov processes and viscosity solutions[M]. New York,Berlin:Springer,1993.
  • 10ZHANG Xin, SIN Tak Kuen, MENG Qingbin. Portfolio selection in the enlarged Markovian Regime-switching market [J]. Society for industrial and Applied Mathematie,2010,48(5):3 368-3 388.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部