摘要
令L=-△+μ为R^n上的广义Schr?dinger算子,n≥3,其中μ≠0是满足尺度不变Kato条件和双倍条件的非负Radon测度.本文使用经典不等式估计,利用变指标和附加函数的性质,证明了与广义Schrodinger算子相关的Marcinkiewicz积分算子在变指标Herz-Morrey空间上是有界的.
Let L =-△ +μ be the generalized Schrodinger operator on R^n, n≥ 3, whereμ≠0 is a nonnegative Radon measure satisfying certain scale-invariant Kato condition and doubling condition. In this paper, using the classical inequalities, by the properties of the variable exponents and the auxiliary functions, we show that the Marcinkiewicz integral operator associated with generalized Schrodinger operator is bounded on Herz-Morrey spaces with variable exponents.
作者
王瑞梅
赵凯
WANG Ruimei;ZHAO Kai(School of Mathematics and Statistics,Qingdao University,Qingdao 266071,China)
出处
《应用数学》
CSCD
北大核心
2019年第1期161-167,共7页
Mathematica Applicata
基金
Supported by the National Natural Science Foundation of China(11471176)