期刊文献+

与广义Schr?dinger算子相关的Marcinkiewicz积分(英文) 被引量:1

Marcinkiewicz Integrals Associated with Generalized Schr?dinger Operators
下载PDF
导出
摘要 令L=-△+μ为R^n上的广义Schr?dinger算子,n≥3,其中μ≠0是满足尺度不变Kato条件和双倍条件的非负Radon测度.本文使用经典不等式估计,利用变指标和附加函数的性质,证明了与广义Schrodinger算子相关的Marcinkiewicz积分算子在变指标Herz-Morrey空间上是有界的. Let L =-△ +μ be the generalized Schrodinger operator on R^n, n≥ 3, whereμ≠0 is a nonnegative Radon measure satisfying certain scale-invariant Kato condition and doubling condition. In this paper, using the classical inequalities, by the properties of the variable exponents and the auxiliary functions, we show that the Marcinkiewicz integral operator associated with generalized Schrodinger operator is bounded on Herz-Morrey spaces with variable exponents.
作者 王瑞梅 赵凯 WANG Ruimei;ZHAO Kai(School of Mathematics and Statistics,Qingdao University,Qingdao 266071,China)
出处 《应用数学》 CSCD 北大核心 2019年第1期161-167,共7页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(11471176)
关键词 MARCINKIEWICZ积分 广义Schrodinger算子 HERZ-MORREY空间 变指标 Marcinkiewicz integral Generalized Schrodinger operator Herz-Morrey space Variable exponent
  • 相关文献

二级参考文献20

  • 1Z. Shen, L^p estimates for Schr6dinger operators with certain potentials, Ann. Inst. Fourier, 45 (1995), 513-546.
  • 2E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Transactions of the American Mathematical Society, 88 (1958), 430-466.
  • 3A. Benedek, A. P. Calderan and R. Panzone, Convolution operators on Banach space valued functions, Proceedings of the National Academy of Sciences of the United States of America, 48 (1962), 356-365.
  • 4W. Gao and L. Tang, Boundedness for Marcinkiewicz integrals associated with Schr6dinger operators, Proceedings-Mathematical Sciences, 124 (2014), 193-203.
  • 5D. Chen and D. Zou, The boundedness of Marcinkiewicz integral associated with Schr6dinger operator and its commutator, J. Function Spaces, Article ID402713, 10 pages, 2014.
  • 6L. Tang and J. Dong, Boundedness for some Schradinger type operators on Morrey spaces related to certain nonnegative potentials, J. Math. Anal. Appl., 355 (2009), 101-109.
  • 7D. Chen and F. Jin, The boundedness of Marcinkiewicz integrals associated with Schr6dinger operator on Morrey spaces, J. Fun. Spaces, 2014, Article ID901267, 11 pages, 2014.
  • 8Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. App1. Math., 66 (2006), 1383-1406.
  • 9P. Harjulehto, P. Hasto, U. V. Le and M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal., 72 (2010), 4551-4574.
  • 10D. Cruz-Uribe, A. Fiorenza and J. M. Martell et al., The boundedness of classical operators on variable L^P spaces, Annales Academiae Scientiarum Fennicae Math., 31 (2006), 239-264.

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部