期刊文献+

基于局部搜索树的UAV与UGS协同移动目标追踪方法 被引量:4

UAV/UGS Collaboration for Moving Target Tracking Based on Local Search Tree
下载PDF
导出
摘要 针对无人机(UAV)与地面无人值守传感器(UGS)的空地协同目标追踪问题,提出一种交通道路网络环境下基于局部搜索树的移动目标搜索追踪方法。在该方法中,无人机通过与地面无人值守传感器抵近通信,获取目标经过传感器节点的时间信息,基于该信息估计目标运动速度及预测目标后续位置,通过局部递归搜索优化无人机对目标的追踪路径。针对追踪过程中不完全信息条件下的传感器节点访问次序决策问题,设计了两种节点选择评价机制并对其效果进行了比较和分析。仿真实验结果表明,该方法能在目标运动路径及速度不断变化的情况下以较大概率捕获目标。 Aiming at air-ground collaboration of Unmanned Aerial Vehicle( UAV) with Unattended Ground Sensor( UGS) for target tracking this paper proposes a searching and tracking method for moving targets based on local search trees in the traffic road network environment. In this method the UAV is in close communication with an UGS to obtain the time information of the target passing through the node. Based on the information the target motion speed is estimated and the subsequent target position is predicted. The path of UAV in target tracking is optimized through local recursive search. For the decision-making of sensor node accessing order with incomplete information in the tracking process two kinds of node selection evaluation mechanisms are designed and analysis is made to their effects. Simulation results show that this method can capture targets with a higher probability when the target’s moving path and speed change greatly.
作者 李静 王楠 许铜华 谷学强 LI Jing;WANG Nan;XU Tong-hua;GU Xue-qiang(College of Intelligent Science,National University of Defense Technology,Changsha 410073,China)
出处 《电光与控制》 CSCD 北大核心 2019年第1期1-7,共7页 Electronics Optics & Control
基金 国家自然科学基金(61603406)
关键词 目标追踪 无人机 无人值守地面传感器 空地协同 节点评价机制 target tracking UAV Unattended Ground Sensor (UGS) air-ground collaboration node evaluation mechanism
  • 相关文献

参考文献8

二级参考文献63

  • 1L. E. Parker. Current research in multi-robot systems[J]. Artificial Life and Robotics, 2003, 7(2): 1 - 5.
  • 2B. Gerkey, M. J. Mataric. A formal framework for the study of task allocation in multi-robot systems[J]. International Journal of Robotics Research, 2004, 23(9): 939 - 954.
  • 3J. Hespanha, J. Kim, S. Sastry. Multiple-agent probabilistic pursuit- evasion games[C]//Proceedings Of 38th IEEE Conference on Decision and Control. Piscataway: IEEE, 1999:2432 - 2437.
  • 4R. Vidal, S. Rashid, C. Sharp, et al. Pursuit-evasion games with unmanned ground and aerial vehicles[C]//Proceedings of IEEE International Conference on Robotics and Automation. New York: IEEE, 2001:2948 - 2955.
  • 5L. Guibas, J. Latombe, S. LaValle, et al. Visibility-based pursuit- evasion in a polygonal environment[]]. International Journal of Computational Geometry and Applications, 1999, 9(5): 471 - 494.
  • 6S. M. Lavalle, D. Lin, L. J. Guibas, et al. Finding an unpredictable target in a workspace with obstacles[C]//Proceedings of IEEE International Conference on Robotics and Automation. New York: IEEE, 1997:737 - 742.
  • 7R. Vidal, O. Shakemia, H. J. Kim, et al. Probabilistic pursuit-evasion games: theory, implementation and experimental evaluation[J]. IEEE Transactions on Robotics and Automation, 2002, 18(5): 662 - 669.
  • 8G. Hollinger, A. Kehagias, S. Singh. Probabilistic strategies for pursuit in cluttered environments with multiple robots[C]// Proceedings of lEEE Conference on Robotics and Automation. New York: IEEE, 2007:3870 - 3876.
  • 9C. Clark, S. Rock, J. C. Latombe. Dynamic networks for motion planning in multi-robot space systems[C]//Proceedings of the 7th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Kobe, Japan, 2003:4222 - 4227.
  • 10J. Vazquez, C. Malcolm. Distributed multirobot exploration maintaining a mobile network[C]//IEEE International Conference on Intelligent Systems. New York: IEEE, 2004:113 - 118.

共引文献46

同被引文献33

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部