期刊文献+

最小体积约束的高光谱图像分辨率增强算法 被引量:3

Hyperspectral Image Resolution Enhancement Algorithm with Minimum Volume Constraint
下载PDF
导出
摘要 针对现有的高光谱多光谱图像融合算法解空间较大、未考虑高光谱数据的物理意义以及存在局部最优的问题,提出了一种基于单形体最小体积约束的耦合非负矩阵分解的高光谱与多光谱图像融合算法(MVC-CNMF)。该算法在混合像元解混的过程中,考虑图像的物理意义,加入了端元单形体最小体积约束。由仿真结果可以看出,该算法能有效地克服现有融合算法中的缺陷,实现了高光谱与多光谱图像的端元与丰度的精确匹配,获得高空间分辨率的融合图像,尤其适用于端元数目较多的高光谱图像。 The current hyperspectral and multi-spectral image fusion algorithms have such defects as having large solution space not considering the physical meaning of hyperspectral data and being prone to local optimal solutions. To solve these problems a hyperspectral and multi-spectral image fusion algorithm is proposed based on Minimum Volume Constraint and Coupled Non-negative Matrix Factorization( MVCCNMF). In the process of separating the mixed pixels the algorithm takes the physical meaning of the image into consideration and adds the minimum volume constraint of the endmember single body. Simulation results show that the proposed algorithm can effectively overcome the defects in the existing fusion algorithmsaccurately match the endmember with the abundance of hyperspectral and multi-spectral images and obtain high-spatial-resolution fused images. This algorithm is especially suitable for the hyperspectral images with a large number of endmembers.
作者 王亚堃 朱荣刚 刘波 李剑茹 WANG Ya-kun;ZHU Rong-gang;LIU Bo;LI Jian-ru(Luoyang Institute of Electro-Optic Equipment,AVIC,Luoyang 471000,China;Science and Technology on Electro-Optic Control Laboratory,Luoyang 471000,China;No.61858 Unit of PLA,Xi'an 710100,China)
出处 《电光与控制》 CSCD 北大核心 2019年第1期38-42,共5页 Electronics Optics & Control
基金 航空科学基金(2017ZC13002)
关键词 高光谱图像 空间分辨率 图像融合 单形体最小体积约束 hyperspectral image spatial resolution image fusion minimum volume constraint
  • 相关文献

参考文献2

二级参考文献29

  • 1张萌,赵慧洁,李娜.高光谱数据光谱分辨率对矿物识别的影响分析[J].红外与激光工程,2006,35(z4):493-498. 被引量:7
  • 2张兵.高连如.高光谱图像分类与目标探测[M].北京:科学出版社,2011.
  • 3Zhang I.iangpei, Zhang I.ifu. HypersepctralRemote Sensing[M]. Beijing: Surveying and Mapping Press, 2011.
  • 4BoardmanJ W. Geomelrie Mixture Analysis of Ima ging Spectrometry l)ata[J] In', Conf Geosciencc and Remote Sensing. Pasadena. CA, 1994.
  • 5Winter M E. N FINI)R: An Algorithm for Fast Autonomous Spectral Endmember I)etermination in Hyperspectral Data[C]. SPIE Conf Imaging Spec- tromelry V, DenverCO, 1999.
  • 6Ghang C I, Wu C G. I.iu W, et al. A New GwingMethod for Simplex-based Endmember Extraction AlgorithmEJ]. IEEE Trans Geosci Remote Sens, 2006 ,44(10): 2 804-2 819.
  • 7Heinz D, Chang C I. Fully Constrained Least Squares Linear Mixture Analysis for Material Quan- tification in Hyperspectral Imagery [J]. IEEE Trans Geosci Remote Sens,2001, 39(3) :529-545.
  • 8Miao L,Qi H. Endmember Extraction from Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization[J]. IEEE Trans Geosci Remote Sens, 2007,45(3): 765-777.
  • 9Huck A, Guillaume M, Blanc-Talon J. Minimum Dispersion Constrained Nonnegative Matrix Factori- zation to Unmix Hyperspectral Data[J]. IEEE Trans Geosci Remote Sens, 2010,48(6) :2 590.
  • 10Liu X S, Xia W, Wang B, et al. An Approach Based on Constrained Nonnegative Matrix Factori- zation to Unmix Hyperspectral Data[J]. IEEE Trans Geosci Remote Sens, 2011, 49(2) : 757-772.

共引文献11

同被引文献48

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部