期刊文献+

一类偏序线性代数上的Freudenthal谱定理

Freudenthal Spectral Theorem on a Special Class of Partially Ordered Linear Algebra
下载PDF
导出
摘要 利用一类特殊的偏序线性代数上的极大投影的概念,讨论了其上的Freudenthal谱定理,不同于以往的方法,仅仅使用了偏序和Dedekindσ完备的基本概念.最后,给出了一个偏序线性代数的例子,它不是格,但是Freudenthal谱定理依然成立. Using the conception of the maximal projection of the special class of partially ordered linear algebras,we prove the spectral theorem on the partially ordered linear algebras.Specially,only rudimentary concepts such as partial ordering,Dedekindσcompleteness are used in this work.Finally,we propose one partially ordered linear algebra,which is not a lattice,but the Freudenthal spectral theorem still holds.
作者 辛巧 穆春来 XIN Qiao;MU Chun-lai(College of Mathematics and Statistics,Yili Normal University,Yili Xinjiang 835000,China;School of Mathema tics and Sta tistics,Chongqing University,Chongqing 401331,China)
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第12期105-111,共7页 Journal of Southwest University(Natural Science Edition)
基金 新疆维吾尔自治区高等学校科研计划项目(XJEDU2014S064)
关键词 偏序线性代数 极大和极小投影 Freudenthal谱定理 partially ordered linear algebra maximal and minimal projections Freudenthal spectral theorem
  • 相关文献

参考文献2

二级参考文献15

  • 1廖祖华,顾慧.(∈,∈∨q_((λ,μ)))-模糊正规子群(英文)[J].模糊系统与数学,2006,20(5):47-53. 被引量:84
  • 2DONTCHEV A L, ROCKAFELLAR R T. Regularity and Conditioning of Solution Mappings in Variational Analysis[J]. Set-Valued Anal, 2004, 12(1/2): 79 - 109.
  • 3HENRION R, OUTRATA J. Calmness of Constraint Systems with Applications [J]. Math Program, 2005,104(2/3):437-464.
  • 4ZHENG X Y,NG K F. Metric Subregularity and Calmness for Nonconvex Generalized Equations in Banach Spaces [J].SIAM J Optim, 2010,20(5): 2119 - 2136.
  • 5NGHIA T T A. A Note on Implicit Multifunction Theorems [J]. Optim Lett,2014,8(1) : 329 - 341.
  • 6BURKE J V,DENG S. Weak Sharp Minima Revisited, Part III: Error Bounds for Differentiable Convex Inclusions [J].Math Program, 2009,116(1/2) : 37 - 56.
  • 7IOFFE A D, OUTRATA J V. On Metric and Calmness Qualification Conditions in Subdifferential Calculus [J]_ Set-Val-ued Anal, 2008, 16(2/3): 199 - 227.
  • 8LEDYAEV Y S,ZHU Q J. Implicit Multifunction Theorems [J]. Set-Valued Anai,1999,7(3) : 209 - 238.
  • 9MORDUKHOVICH B H. Variational Analysis and Generalized Differentiation, Vol. I: Basic Theory [M]. Berlin:Springer, 2006.
  • 10MORDUKHOVICH B H. Variational Analysis and Generalized Differentiation, Vol. II: Applications [M], Berlin:Springer, 2006.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部