摘要
互联网和大数据如何影响和改变着舆论研究?本文认为,舆论研究历史上存在两条"河流",一条是以民意调查测验为代表、聚焦特定单一时间点上意见分布的"大众意见"式的舆论研究,另一条则是强调分析舆论发展过程与动态演化的"社会过程"式的舆论研究。囿于理论、方法和数据的局限,舆论研究的传统偏重前者而忽视后者。大数据和计算社会科学的出现为社会过程式舆论研究的发展带来了新的契机,在数据、模型和方法三方面准备了资源。并以具体研究为例,讨论计算传播研究取向如何促进网络舆论过程与动态演化研究的开展。
How is internet and big data influencing and changing public opinion research?This article believes that there exist "two rivers"in the history of public opinion research:One is "mass opinion"approach focusing on the "one-shot"aggregation of responses from individuals;The other is "social process"approach focusing on studying public opinion from a dynamic social process perspective.The"mass opinion"approach is the most common one used by public opinion scholars and the "social process"approach deserves more academic attention.The emergence of big data and computational communication research provide the new opportunities for the development of dynamic and evolutional public opinion process research with new data,model,and methodology.This article reviews three major advances in this area based on analysis of computational studies on public opinion process in SSCI communication journals,and discusses the future of online public opinion process and dynamics research via computational methods.
作者
周葆华
ZHOU Bao-hua(School of Journalism,Fudan University,Shanghai,200433,PRC)
出处
《西北师大学报(社会科学版)》
CSSCI
北大核心
2019年第1期37-46,共10页
Journal of Northwest Normal University(Social Sciences)
基金
国家社会科学基金项目"社会化媒体对转型期中国社会舆论的影响研究"(13CXW021)
教育部重点研究基地重大项目"移动互联网使用与城市公众的生活方式"(15JJD860001)
上海市科委项目"基于类脑智能的舆情系统研究"(17JC1420200)
国家自然科学基金项目"社会集群行为涌现与演化的机制分析及预测"(71731004)
关键词
网络舆论
舆论动力学
舆论演化
大数据
计算传播
沉默的螺旋
ABM模型
online public opinion
opinion dynamics
big data
computational communication research
spiral of silence
agent-based modeling