期刊文献+

基于遗传算法的低碳物流运输网络优化研究 被引量:4

Optimization of Low-Carbon Logistics Transportation Network Based on Genetic Algorithm
下载PDF
导出
摘要 物流运输网络优化是创建低碳物流体系的重要内容。低碳理念的出现,是为了响应政府低碳线路规划和货主之间的博弈需求。对于顶层物流网络的完善来说,需要遵循碳排放、成本、时间的最少化等条件,优化后的Logit路径则用来对底层货流进行配置,构建基于遗传算法来计算求解的低碳物流运输网络层次优化模型。从案例仿真求解的结果上看,在物流运输网络低碳优化中这一计算模型与理论算法是相对精准和有效的,对低碳物流的发展具有一定的促进作用。 Logistics and transportation network optimization is an important part of building low-carbon logistics system. The emergence of low-carbon concept is to respond to the government’s low-carbon line planning and the game demand between cargo owners. For the improvement of top-level logistics network,it is necessary to follow the conditions of carbon emission,cost,time minimization,etc. The optimized Logit path is used to configure the bottom cargo flow. The hierarchical optimization model of low carbon logistics transportation network is constructed based on genetic algorithm. From the result of the case simulation,the calculation model and theoretical algorithm are relatively accurate and effective in the low carbon optimization of logistics transportation network,which has a certain role in promoting the development of low carbon logistics.
作者 王伟 WANG Wei(Department of Management,Guangdong AIB Polytechnic College,Guangzhou 510507,China)
出处 《东莞理工学院学报》 2019年第1期50-56,共7页 Journal of Dongguan University of Technology
基金 广东高校省级重点平台和重大科研项目-青年创新人才类"广东生鲜农产品流通体系与物流供应链模式研究"(2017GWQNCX038) 广州市哲学社会科学十三五规划课题"广州市农产品流通体系与协调机制研究"(2017GZYB16)
关键词 低碳物流 运输网络 遗传算法 low-carbon logistics transportation network genetic algorithm
  • 相关文献

参考文献5

二级参考文献42

  • 1魏航,李军,刘凝子.一种求解时变网络下多式联运最短路的算法[J].中国管理科学,2006,14(4):56-63. 被引量:31
  • 2Huang Hua.A study of developing Chinese low carbon logistics in the new railway period[C]//Proceedings of the International Conference on E-product E-service and E-entertainment(ICEEE), 2010:635-638.
  • 3Sundarakani B, Souza R.Modeling carbon footprints across the supply chain[J].Production Economics,2010(13):475-481.
  • 4Taniguchi E,Thompson R G, Yamada T, van Duin J H R. City logistics: network modelling and intelligent transport systems[M]. Pergamon, Amsterdam, 2001.
  • 5Hepburn C. Regulation by prices, quantities or both : a review of instrument choice [J]. Oxford Review of Economic Policy, 2006, 22(2) :226-247.
  • 6Baranzini A, Goldemberg J, Speck S. A future for carbon taxes[J]. Ecological Economics, 2000,32(3 ) :395-412.
  • 7McKibbin W, Wilcoxen P. The role of economics in climate change policy[J]. Journal of Economic Perspectives,2002,16 (2) : 107-129.
  • 8Ehmke J F,Steinert A, Mattfeld D C. Advanced routing for city logistics service providers based on time-dependent travel times[J]. Journal of Computational Science, 2012,3 (4) : 193-205.
  • 9Sheu J B. A novel dynamic resource allocation model for demand-responsive city logistics distribution operations [J]. Transportation Research Part E, 2006,42 (6) : 445 - 472.
  • 10Benjaafar S, Li Y Z, Daskin M. Carbon footprint and the management of supply chains: insights from simple models [R/EB]. (2011-05-20)[2013-05-16].Working paper, http://www.isye.umn.edu/facuhy/pdf/.

共引文献28

同被引文献27

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部