摘要
文章通过真实数据,对基于分位回归的最小二乘(PLS)算法进行应用研究。一方面保留原PLS无独立性假定、无数据分布要求、兼顾变量间关系、数值计算结果客观等性质,另一方面利用分位回归不要求样本同质性、不受离群点影响等优势,完成应用研究。结果表明,基于分位回归的PLS算法避免样本异质性和数据离群点带来的困扰,不拘泥于展示数据信息的平均水平,详实展示不同分位数下数据全貌,更好地揭示变量间关系规律。
This paper utilizes real data to make an application research on the partial least square(PLS) algorithm based on quantile regression.On the one hand,the original PLS has maintained such properties as no independent assumption,no data distribution requirement,consideration of the relationship between variables,the objective results of numerical calculation and so on;on the other hand,the application research is completed by taking advantage of the partial regression which does not require sample homogeneity and is not affected by outliers.The results show that PLS algorithm based on quantile regression avoids the perplex caused by sample heterogeneity and data outliers,not limited to displaying the average level of data information,but shows the full view of data under different quantiles in detail,so as to better reveal the law of relationship between variables.
作者
程豪
易丹辉
Cheng Hao;Yi Danhui(National Academy of Innovation Strategy,China Association for Science and Technology,Beijing 100012,China;Center for Statistical Consultation,Renmin University of China,Beijing 100972,China;School of Statistics,Renmin University of China,Beijing 100972,China)
出处
《统计与决策》
CSSCI
北大核心
2019年第2期17-19,共3页
Statistics & Decision
基金
国家科技支撑计划课题(2012BAI25B02)
中国人民大学科学研究基金(中央高校基本科研业务费专项资金资助项目)(16XNH102)
中医药行业科研专项(201207005)
关键词
分位回归
PLS
二阶因子模型
quantile regression
PLS
second-order factor model