期刊文献+

结合密度峰聚类的K均值图像分割算法 被引量:2

K-means Image Segmentation Algorithm Combined with Density Peak Clustering
下载PDF
导出
摘要 针对K均值聚类算法在图像分割应用中的不足,结合密度峰聚类算法对原有算法进行改进,得到了一种图像分割效果较好的改进K均值算法。K均值算法需要人工指定聚类中心数目,并且聚类中心的随机初始化对最终的图像分割结果有很大影响。针对以上缺点,对K均值算法进行改进,通过密度峰聚类算法自动确定了图像分割的聚类中心数目和较为准确的初始聚类中心。为了衡量色差在人眼中的感知情况,在算法中引入了NBS距离作为距离测度。实验结果表明,改进后的图像分割算法在分割图像时具有稳定的性能和较好的效果。 Aiming at the deficiency of K-means clustering algorithm in image segmentation,an improved K-means algorithm with better image segmentation effect was proposed by combining density peak clustering algorithm to improve the original algorithm.The K-means algorithm needs to specify the number of clustering centers manually,and the initialization of clustering centers has a great impact on the final image segmentation results.In view of the above shortcomings,the K mean algorithm was improved.The number of clustering centers and the more accurate initial clustering centers for image segmentation were automatically determined by density peak algorithm.In order to measure the perception of chromatic aberration in human eyes,NBS distance was introduced into the algorithm as distance measure.Experimental results show that the improved image segmentation algorithm has stable performance and good effect in segmentation of images.
作者 王鹏宇 游有鹏 杨雪峰 WANG Pengyu;YOU Youpeng;YANG Xuefeng(Department of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics ,Nanjing 210001,China)
出处 《机械与电子》 2019年第2期40-44,共5页 Machinery & Electronics
关键词 K均值聚类 密度峰聚类 NSB距离 图像分割 K-means clustering density peak clustering NBS distance image segmentation
  • 相关文献

参考文献5

二级参考文献22

  • 1黄建忠.彩色图像处理及其在影视业务中的若干应用研究(博士学位论文)[M].武汉:华中理工大学,1997..
  • 2Scherrer B, Forbes F, Garbay C, et al. Distributed Local MRF Models for Tissue and Structure Brain Segmentation[J]. IEEE Transactions on Medical Imaging, 2009, 28(8): 1278-1295.
  • 3Kolmogorov V, Zabih R. What Energy Functions Can be Minimized Via Graph Cuts?[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 147-159.
  • 4Peng B, Vcksler O. Parameter Selection for Graph Cut Based on Image Segmentation[C]//Proc. of British Machine Vision Conference. Leeds, UK: [s. n.], 2008.
  • 5Rother C, Blake A, Kolmogorov V. Grabcut-lnteractive Foreground Extraction Using Iterated Graph Cuts[J]. Transactions on Graphics, 2004, 23(3): 309-314.
  • 6Boykov Y, Jolly M. Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images[C]//Proc. of International Conference on Computer Vision. Vancouver, Canada: [s. n.], 2001.
  • 7MacQueen J. Some Methods for Classification and Analysis of Multivariate Observations[C]//Proc. of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, USA: University of California Press, 1967.
  • 8Greenspan H, Ruf A, Goldberger J. Constrained Gausslan Mixture Model Framework for Automatic Segmentation of MR Brain Images[J]. IEEE Transactions on Medical Imaging, 2006, 25(9): 1233-1245.
  • 9黄建忠,博士论文,1997年
  • 10王润生,图像理解,1995年

共引文献96

同被引文献4

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部