期刊文献+

Hydrodynamic Coefficients for a 3-D Uniform Flexible Barge UsingWeakly Compressible Smoothed Particle Hydrodynamics 被引量:4

利用弱可压SPH计算三维均匀柔性驳水动力系数(英文)
下载PDF
导出
摘要 The numerical modelling of the interactions between water waves and floating structures is significant for different areas of the marine sector, especially seakeeping and prediction of wave-induced loads. Seakeeping analysis involving severe flow fluctuations is still quite challenging even for the conventional RANS method. Particle method has been viewed as alternative for such analysis especially those involving deformable boundary, wave breaking and fluid fragmentation around hull shapes. In this paper, the weakly compressible smoothed particle hydrodynamics(WCSPH), a fully Lagrangian particle method, is applied to simulate the symmetric radiation problem for a stationary barge treated as a flexible body. This is carried out by imposing prescribed forced simple harmonic oscillations in heave, pitch and the two-and three-node distortion modes. The resultant,radiation force predictions, namely added mass and fluid damping coefficients, are compared with results from 3-D potential flow boundary element method and 3-D RANS CFD predictions, in order to verify the adopted modelling techniques for WCSPH.WCSPH were found to be in agreement with most results and could predict the fluid actions equally well in most cases. The numerical modelling of the interactions between water waves and floating structures is significant for different areas of the marine sector, especially seakeeping and prediction of wave-induced loads. Seakeeping analysis involving severe flow fluctuations is still quite challenging even for the conventional RANS method. Particle method has been viewed as alternative for such analysis especially those involving deformable boundary, wave breaking and fluid fragmentation around hull shapes. In this paper, the weakly compressible smoothed particle hydrodynamics(WCSPH), a fully Lagrangian particle method, is applied to simulate the symmetric radiation problem for a stationary barge treated as a flexible body. This is carried out by imposing prescribed forced simple harmonic oscillations in heave, pitch and the two-and three-node distortion modes. The resultant,radiation force predictions, namely added mass and fluid damping coefficients, are compared with results from 3-D potential flow boundary element method and 3-D RANS CFD predictions, in order to verify the adopted modelling techniques for WCSPH.WCSPH were found to be in agreement with most results and could predict the fluid actions equally well in most cases.
出处 《Journal of Marine Science and Application》 CSCD 2018年第3期330-340,共11页 船舶与海洋工程学报(英文版)
基金 funded by the Ministry of Higher Education(MOHE)of Malaysia under the Fundamental Research Grant Scheme(FRGS)No.FRGS17-042-0608
关键词 WEAKLY COMPRESSIBLE Fluid structure interaction Smoothedparticlehydrodynamics SEAKEEPING HYDROELASTICITY Radiation Weakly compressible Fluid structure interaction Smoothed particle hydrodynamics Seakeeping Hydroelasticity Radiation
  • 相关文献

同被引文献18

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部