期刊文献+

基于降噪源分离的脑电信号消噪方法 被引量:5

Denoising method of EEG signal based on tangent function of denoising source separation
原文传递
导出
摘要 为了解决采集的脑电信号中常含有工频、心电、肌电和眼电等多源干扰问题,提出一种基于降噪源分离的脑电信号消噪方法.首先,该方法经过小波分解重构,消除高斯噪声完成预处理;然后,根据脑电信号的非高斯性,用正切函数进行降噪源分离,将含干扰的脑电信号逐次迭代提取得到分离信号作为消噪结果;最后,引入相关系数检测消噪效果.实验结果表明:经过降噪源分离提取得到的分离信号之间呈现弱相关性,而目标分离信号与源信号具有强相关性,可有效去除脑电信号中的心电和眼电伪迹. The captured electroencephalogram(EEG) signals usually contain multiple sources of interference,such as power frequency,electrocardiogram(EKG),electromyogram(EMG),vertical electrooculogram(VEOG) and so on.In this paper,a denoising method of EEG signals based on tangent function noise source separation was proposed.Firstly,the EEG signals were decomposed by wavelet transform to eliminate the Gauss noise for pretreatment.Secondly,according to the non-Gaussianity of EEG signals,the tangent function was introduced to separate the noise source,and the interfering EEG signals were iteratively extracted generation by generation to obtain the separated signals as the denoising result.Finally,the correlation coefficient was proposed to verify the denoising effect.The experimental result reveals that a weak correlation exists between the isolated signals obtained by noise separation,while the target separated signals show a strong correlation with the source signals,which means that EKG and VEOG artifacts from EEG signals are removed effectively.
作者 罗志增 金晟 李阳丹 Luo Zhizeng;Jin Sheng;Li Yangdan(Intelligent Control and Robot Research Institute,Hangzhou Dianzi University,Hangzhou 310018,China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第12期60-64,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61671197)
关键词 降噪源分离 脑电信号 小波变换 降噪函数 相关系数 denoising source separation electroencephalogram (EEG)signals wavelet transform denoising function correlation coefficient
  • 相关文献

参考文献5

二级参考文献44

  • 1肖文书,张兴敢,都思丹.雷达信号的盲分离[J].南京大学学报(自然科学版),2006,42(1):38-43. 被引量:25
  • 2潘泉,孟晋丽,张磊,程咏梅,张洪才.小波滤波方法及应用[J].电子与信息学报,2007,29(1):236-242. 被引量:115
  • 3卜凯旗,任兴民,秦卫阳.燃气轮机发电机组的振动信号监测与分析系统[J].噪声与振动控制,2007,27(2):40-42. 被引量:11
  • 4万坚,涂世龙,廖灿辉,等.通信混合信号盲分离理论与技术[M].北京:国防工业出版社,2012:88-90.
  • 5S?REL?J,VALPOLA H. Denoising source separation[J].{H}JOURNAL OF MACHINE LEARNING RESEARCH,2005.233-272.
  • 6ALMEIDA M S C,VALPOLA H,S?REL?J. Separation of nonlinear image mixtures by denoising source Separa-tion[A].Charleston,SC,USA.Berlin,Spring-er-Verlag,2006.8-16.
  • 7CHEVEIGNé A. Time-shift denoising source separation[J].{H}Journal of Neuroscience Methods,2010.113-120.
  • 8HE Q,FENG Z,KONG F. Detection of signal transients us-ing independent component analysis and its application in gearbox condition monitoring[J].{H}Mechanical Systems and Signal Processing,2007,(05):2056-2071.
  • 9HYVARINEN A,HARHUNEN J,OJA E. Independent component analysis[M].{H}New York:John Wiley and Sons,Inc,2001.
  • 10Chi-Tat Leung,Wan-Chi Siu. A general contrast function based blind source separation method for convolutively mixed independent sources[J].{H}SIGNAL PROCESSING,2007,(01):107-123.

共引文献20

同被引文献61

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部