期刊文献+

仿鼠脑海马的机器人地图构建与路径规划方法 被引量:4

Robotic map building and path planning methods based on the hippocampus of rat’s brain
原文传递
导出
摘要 针对移动机器人在非结构化环境下的导航任务,根据哺乳动物海马体空间细胞的认知机理,提出了一种仿鼠脑海马的机器人情景认知地图构建及路径规划方法.在机器人情景记忆建模过程中集成位置细胞与网格细胞神经元活动机制,建立机器人空间环境情景认知地图,采取状态神经元集合序列全局路径规划策略,在记忆空间以自我为参考,通过事件再配置预测并规划最优情景轨迹.实验结果表明:该方法能够生成精确的情景认知地图,并且基于目标导航能够规划一条最佳路径. Inspired by the biological cognitive mechanism of hippocampal spatial cells in mammals,an episodic cognitive map building and global path planning methods were proposed for the mobile robotic navigation tasks in an unstructured environment.The activity mechanism of place cells and grid cells were integrated into the episodic memory modelling,and an episodic cognitive map was built for the robotic spatial environment.The proposed global path planning strategy was adopted based on state neurons sequence reorganization.The mobile robot could localize itself relative to its past experiences in the memory space,and then anticipated and planned the future events sequence.The experimental results show that the proposed methods can build an accurate episodic-cognitive map and plan a preferred trajectory for robotic task navigation.
作者 邹强 丛明 刘冬 杜宇 Zou Qiang;Cong Ming;Liu Dong;Du Yu(School of Mechanical Engineering,Dalian University of Technology,Dalian 116024,Liaoning China;Dalian University of Technology Jiangsu Research Institute Co.Ltd.,Changzhou 213164,Jiangsu China;Dalian Dahuazhongtian Technology Co.Ltd.,Dalian 116023,Liaoning China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第12期83-88,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61503057) 辽宁省自然科学基金联合基金资助项目(20180520017) 江苏省智能装备产业技术创新中心产业技术联合研发资金资助项目
关键词 移动机器人 海马体 位置细胞 网格细胞 情景认知地图 路径规划 状态神经元 mobile robot hippocampus place cells grid cells episodic-cognitive map path planning state neurons
  • 相关文献

参考文献3

二级参考文献35

  • 1林龙年,Remus Osan,Shy Shoham,金文军,左文琪,钱卓,梅兵,陈桂芬.小鼠海马神经网络对情景体验进行实时编码的功能单元的发现与鉴别[J].华东师范大学学报(自然科学版),2005(Z1):208-216. 被引量:2
  • 2王学宁,贺汉根,徐昕.求解部分可观测马氏决策过程的强化学习算法[J].控制与决策,2004,19(11):1263-1266. 被引量:5
  • 3Ikeda S, Miura J. 3D indoor environment modeling by a mobile robot with omnidirectional stereo and la- ser range finder[C] // International Conference on In telligent Robots and Systems. Beijing: Institute of E- lectrical and Electronics Engineers Inc, 2006:3435- 3440.
  • 4Klein G. Murray D. Parallel tracking and mapping for small AP, workspaces[C]//2007 6th IEEE and ACM International Symposium on Mixed and Aug- mented Reality. Nara: Inst of Elec and Elec Eng Computer Society, 2007: 225-234.
  • 5Rosten E, Drummond T. Machine learning for high- speed corner detection[C]//9th European Conference on Computer Vision. Graz: Springer Verlag, 2006: 430-443.
  • 6Rosten R, Porter R, Drummond T. Faster and bet- ter: a machine learning approach to corner detection . IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2010, 80(11): 105-119.
  • 7Newcombe R A, Izadi S, Hilliges O, et al. Kinect fusion: real-time dense surface mapping and tracking [C]//10th IEEE/ACM International Symposium on Mixed and Augmented Reality. Basel: IEEE, 2011: 127-136.
  • 8Izadi S, Kim D, Hilliges O, et al. Kinect fusion: re- al-time 3D reconstruction and interaction using a moving depth camera[C]//24th Annual ACM Sym- posium on User Interface Software and Technology. Santa "Barbara: Association for Computing Machiner- y, 2011: 559-568.
  • 9Fischler M A, Bolles R C. Random sample consen- sus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Com- munications of the ACM, 1981, 24(6): 381-395.
  • 10Jan S, Michal J, Tomas P. 3D with Kinect[C]//2011 IEEE International Conference on Computer Vision Workshops. Barcelona: Institute of Electrical and Electronics Engineers Inc, 2011: 1154-1160.

共引文献43

同被引文献105

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部