期刊文献+

一种基于全卷积神经网络的横担姿态测量方法 被引量:4

Attitude measurement for cross arm based on fully convolutional network
原文传递
导出
摘要 为满足配电线路维护机器人更换避雷器的作业需求,提出了一种基于全卷积神经网络的横担姿态测量方法.通过分析三维几何特征建立了横担姿态模型;采用基于全卷积神经网络的图像分割方法获得横担区域,并以此作为掩膜进行边缘检测,去除环境干扰;采用基于投票法和霍夫空间约束的直线检测提取横担主体区域轮廓直线,并给出了求解横担姿态向量的算法.实验结果表明:所提出方法能较为精确地测得横担姿态,为机器人自主更换避雷器奠定了良好基础. Aiming atmeasuring the cross arm attitude for live-line maintenance robot in lightning arrester replacement operation,an attitude measurement method for the cross arm based on the fully convolutional network was proposed.The cross arm attitude model was built by analyzing its three-dimensional geometric features.The image segmentation method based on the fully convolutional network was applied to obtain the cross arm region,which was used as a mask for edge detection and removes environmental interference factors effectively.The line detection based on voting method and Hough space constraint was used to extract main contour lines of the cross arm,and the algorithm to find the cross arm attitude vector was also given.The experimental results show that the proposed method can accurately measure the cross arm attitude and lay a good foundation for the robot to replace the lightning arrester independently.
作者 吴巍 郭飞 郭毓 郭健 Wu Wei;Guo Fei;Guo Yu;Guo Jian(School of Automation,Nanjing University of Science & Technology,Nanjing 210094,China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第12期106-111,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 江苏省重点研发计划资助项目(BE2017161) 江苏高校优势学科建设工程资助项目 国家电网公司科技项目(SGJSCZ00FZJS1701049,SGJSCZ00FZJS1701074,SGJSCZ00FZJS1601242)
关键词 配电线路维护机器人 全卷积神经网络 姿态测量 边缘检测 直线检测 live-line maintenance robot fully convolutional network attitude measurement edge detection line detection
  • 相关文献

参考文献4

二级参考文献98

  • 1唐鹏,高琳,盛鹏.基于动态形状的红外目标提取算法[J].光电子.激光,2009,20(8):1049-1052. 被引量:3
  • 2闫成新,桑农,张天序.基于图论的图像分割研究进展[J].计算机工程与应用,2006,42(5):11-14. 被引量:33
  • 3陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):110-119. 被引量:58
  • 4Pal N R, Pal S K. A review on image segmentation tech- niques. Pattern Recognition, 1993, 26(9): 1277-1294.
  • 5Veksler O. Efficient Graph-based Energy Minimization Methods in Computer Vision [Ph.D. dissertation], Cornell University, USA, 1999.
  • 6Bhandarkar S M, Zhang H. A comparison of stochastic op- timization techniques for image segmentation. International Journal o? Intelligent Systems, 2000, 15(5): 441-476.
  • 7Wang J S, Swendsen R H. Cluster Monte Carlo algorithms. Physica A: Statistical Mechanics and Its Applications, 1990, 167(3): 565--578.
  • 8Tu Z W, Zhu S C. Image segmentation by data-driven Markov chain Conte Carlo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 657-673.
  • 9Barbu A, Zhu S C. Generalizing Swendsen-Wang to sam- pling arbitrary posterior probabilities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1239-1253.
  • 10MarteUi A, An application of heuristic search methods to edge and contour detection. Communications of the ACM, 1976, 19(2): 73-83.

共引文献228

同被引文献68

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部