期刊文献+

三维重建中的大规模航空影像检索方法 被引量:3

Large scale aerial image retrieval method in 3D reconstruction
原文传递
导出
摘要 针对互联网获取的航空影像数据或非摄影测量专业人员拍摄的无人机影像数据进行高精度测绘与三维重建时,从中检索相似影像较为困难的问题,该文提出了一种基于尺度不变特征变换(SIFT)算子与词汇树的大规模航空影像检索方法。该方法可以从规模庞大、排序复杂的航空影像中快速准确地检索出相似影像。首先利用SIFT描述子来代表影像,然后通过分层K-means算法对影像库的SIFT描述子构建词汇树,最后再利用TF-IDF方法加权计算待查询影像与影像集中各影像的相似度,获得相似影像。通过对多组大规模航空影像数据进行试验,结果证明了该文所提算法的可靠性、准确性和实用性。 Aiming at the problem of how to retrieve images with overlapping regions quickly and accurately while using these image data obtained from the Internet or non-photogrammetry professionals in unmanned aerial vehicle(UAV)imaging data for high-precision mapping and 3 Dreconstruction,this paper proposed a large-scale aerial image retrieval method based on the scale invariant feature transform(SIFT)operator and the vocabulary tree.This method could quickly and accurately retrieve similar images from massive and unordered aerial images.Firstly,the SIFT descriptor was used to represent the image and then the vocabulary tree was built using SIFT descriptors in the image library through the hierarchical K-means algorithm.Finally,the term frequency-inverse document frequency method which calculated similarity in query images and images collection were further utilized to obtain the similar images.Experiments with large-scale aerial images showed the reliability,accuracy and actual performance of the proposed algorithm.
作者 王豪 张力 艾海滨 安宏 WANG Hao;ZHANG Li;AI Haibin;AN Hong(Chinese Academy of Surveying and Mapping,Beijing 100830,China;Gansu Weipu Information Technology Co.,Ltd.,Lanzhou 730000,China)
出处 《测绘科学》 CSCD 北大核心 2019年第2期136-144,共9页 Science of Surveying and Mapping
基金 测绘地理信息公益性行业科研专项(201512009) 中国测绘科学院基本科研业务费项目(7771608)
关键词 影像检索 词汇树 树型结构 SIFT算子 TF-IDF加权 image retrieval vocabulary tree tree structure SIFT operator TF-IDF weighting
  • 相关文献

参考文献2

二级参考文献15

  • 1Sivic J, Zisserman A. Video Google: A Text Retrieval Approach to Object Matching in Videos // Proc of the 9th IEEE International Conference on Computer Vision. Nice, France, 2003, II: 1470- 1477.
  • 2Kesorn K, Poslad S. An Enhanced Bag-of-Visual Word Vector Space Model to Represent Visual Content in Athletics Images. IEEE Trans on Multimedia, 2012, 14 ( 1 ) : 211-222.
  • 3Lowe D G. Distinctive Image Features from Scale-Invariant Key- points. International Journal of Computer Vision, 2004, 60 ( 2 ) : 91-110.
  • 4Philbin J, Chum O, Isard M, et al. Object Retrieval with Large Vocabularies and Fast Spatial Matching//Proc of the IEEE Confer- ence on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007:1-8.
  • 5Lopez-Sastre R J, Tuytelaars T, Acevedo-Rodriguez F J, et al. Towards a More Discriminative and Semantic Visual Vocabulary. Computer Vision and Image Understanding, 2011, 115 ( 3 ) : 415 - 425.
  • 6Zhang Yin, Jin Rong, Zhou Zhihua. Understanding Bag-of-Words Model: A Statistical Framework. International Journal of Machine Learning and Cybernetics, 2010, 1 (1/2/3/4) : 43-52.
  • 7Nist6r D, Stew6nius H. Sealable Recognition with a Vocabulary Tree // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA, 2006, I: 2161-2168.
  • 8Philbin J, Chum O, Isard M, et al. Eost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases/! Proc of the IEEE Conference on Computer Vision and Pattern Recogni- tion. Anchorage, USA, 2008:1-8.
  • 9Jegou H, Douze M, Schmid C. Improving Bag-of-Features for Large Scale Image Search. International Journal of Computer Vision, 2010, 87(3): 316-336.
  • 10Liu Lingqiao, Wang Lei, Liu Xinwang. In Defense of Soft-Assign- ment Coding//Proc of the 13th IEEE International Conference on Computer -ision. Barcelona, Spain, 2011 : 2486-2493.

共引文献17

同被引文献28

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部