期刊文献+

基于柔性毛刷的自旋卫星的消旋动力学分析 被引量:5

Dynamic analysis of rotating satellite de-spun using flexible brush
原文传递
导出
摘要 随着人类在太空中的不断探索与扩张,太空的失效卫星不断增多.在对失效卫星的抓捕过程中,卫星的翻滚自旋一直是影响抓捕系统稳定的主要问题.针对上述问题,本文提出一种柔性减速刷消旋结构,将其置于七自由度机械臂的末端,形成消旋空间机器人.通过末端柔性减速刷与翻滚目标帆板之间的接触碰撞来耗散翻滚目标的动量,进行自由翻滚目标的角速度消旋.本文基于绝对节点坐标法(ANCF)大变形索梁单元的绳索单元,建立柔性减速刷的连续介质模型.根据Hertz理论,计算柔性减速刷与翻滚目标帆板之间的接触碰撞力.针对不同转速状态下的非合作目标,通过动力学仿真分析柔性减速刷的长度、角度等参数对于消旋效果的影响,并得到了最优的消旋参数.运用此参数进行消旋的仿真验证,结果表明该策略能成功消除初始自旋角速度,具有可行性和有效性. With the continuous exploration and expansion of human beings in space, the number of satellites in space is gradually increasing. In the process of catching the failed satellites, the rolling spin of the satellite has always been the main problem which is affecting the stability of the catching system between targets and servers. The derotation mechanism, a flexible deceleration brush, is proposed, which is placed at the end of a seven-degree-of-freedom manipulator to form a racemable space robot. The momentum of the rolling target is dissipated by the contact collision between the end flexible deceleration brush and the rolling target windsurfing board. The angular velocity deceleration of the freely rolling target is carried out. Based on the rope element of the large deformation cable beam element of the absolute nodal coordinate method(ANCF), the continuum model of the flexible deceleration brush is established. According to the Hertz theory,contact collision force between the flexible deceleration brush and the rolling target windsurfing board are calculated. For the non-cooperative target of free rolling in different speeds, the effects of the length, angle and other parameters of the flexible deceleration brush on the racemization effect are analyzed by dynamics simulation, and the optimal racemization parameters are obtained in the process of the dynamics simulation. Using these parameters to verify the simulation of the racemization, the results show that the strategy, which is using flexible deceleration brush to rack non-cooperative targets, can successfully eliminate the initial spin angular velocity and it is feasible and effective.
作者 孙晟昕 吴昊 魏承 赵阳 SUN ShengXin;WU Hao;WEI Cheng;ZHAO Yang(Department of Aerospace Engineering,Harbin Institute of Technology,Harbin 150001,China)
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2019年第2期135-142,共8页 Scientia Sinica Physica,Mechanica & Astronomica
基金 微小型航天器技术国防重点学科实验室开放基金(编号:HIT.KLOF.MST.201703) 空间智能控制技术重点实验室开放基金(编号:ZDSYS-2017-07)资助
关键词 柔性减速刷 非合作目标 消旋 绝对节点坐标方法 绳索建模 flexible deceleration brush non-cooperative target de-spun absolute nodal coordinate formulation cable dynamics
  • 相关文献

参考文献4

二级参考文献37

  • 1陈统,徐世杰.非合作式自主交会对接的终端接近模糊控制[J].宇航学报,2006,27(3):416-421. 被引量:30
  • 2Wingo D R. Orbital recovery ' s responsive commercial space tug for life extension mission. AIAA-2004 3004, 2004.
  • 3Polites M E. An assessment of the technology of automa- ted rendezvous and capture in space. NASA-TP-1998- 208528, 1998.
  • 4Regan F J, Kavetsky R A. Add 2 on controller for ballis- tic reentry vehicles. IEEE Transactions on Automatic Control, 1984, 12(6): 869 880.
  • 5Lorell K R, Lange B O. An automatic mass-trim system for spinning spacecraft. AIAA Journal, 1972, 10 (8) 1031-1015.
  • 6Chilcls D A. Movable mass attitude stabilization system for artificial space stations. Journal of Spacecraft and Rockets, 1974, 8(9) :11-15.
  • 7Kuneiw B, Kaplan M. Optimal space station detumbling by Internal mass motion. Automatica, 1976, 12 (5): 45-51.
  • 8Salimov G R. On the stability of a rotating space station containing a moving element. Mechanics Solids, 1975, 10 (5) : 41-45.
  • 9Jae J K, Brij N A. Automatic mass balancing of air-bear ing-based three-axis rotational spacecraft simulator. Jour- nal of Guidance, Control, and Dynamics, 2009, 32 (3): 1005-1017.
  • 10Small D, Zajac F. A linearized analysis and design of an automatic balancing system for the three axis air bearing table. NASA TM-X-50177, 1963.

共引文献42

同被引文献26

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部