期刊文献+

有机-无机范德瓦尔斯异质结界面的光电过程

Interfacial optoelectronic process in organic-inorganic van der Waals hetero-structure
原文传递
导出
摘要 近年来,有机-无机范德瓦尔斯异质结由于其低成本加工和高性能而在光电应用领域引起了极大的关注.无机的二维材料具有光暗电导比高、载流子迁移率高、稳定性高以及使用寿命长等优点,但是其吸收带窄、可选材料较少、生产成本高;而有机材料具有低成本、透明、柔性、重量轻和易加工等优点,但其介电常数低、载流子迁移率低.如果通过合理的界面设计将二者相结合,扬长避短,有望获得更加优良的光电性能.目前国际上已有多个研究组在这个领域进行了探索性的研究,主要集中在材料的探索和器件功能性的开发,但是其背后的物理原理还不清晰.而微观机理的研究离不开先进的表征技术和测量方法的发展,因此本文旨在总结目前该领域研究进展的基础上,重点介绍有机-无机范德瓦尔斯异质结界面光电子学的表征方法,主要集中在以下3个方面:界面处材料的结构与分子表征、电子结构与局域态表征和微观动力学过程.此外,还针对该领域存在的问题提出了潜在的表征手段,进一步讨论了该领域可能的发展方向. The tragedy of creating inorganic van der Waals heterostructure has inspired worldwide efforts to integrate various organic materials and distinct inorganic two dimensional(2D) materials to construct organic-inorganic van der walls heterostructures, which hold the great potentials for future flexible electronic and optoelectronic applications. Inorganic 2D materials, e.g., graphene and transition metal dichalcogenides(TMDs), have been extensively investigated for next-generation flexible nanoelectronics, nanophotonics and optoelectronics applications. These materials are benefit in exceptional electronic, optical and optoelectronic properties, such as high tunable optical bandgaps, high carrier mobility, direct-indirect bandgap crossover, and strong spin-orbit coupling etc., but limited in narrow absorption band, high cost and relatively difficult fabrication of high-quality single-crystals. In contrast, organic materials have many advantages, such as low cost, transparency, flexibility, light weight and easy processing, which makes them great candidates for large-area displays, solid-state lighting, sensor and organic solar cell, however, they are shorted in low dielectric constant, low carrier mobility and poor thermo-stability. By marrying the fields of organics and 2D materials, it’s easy to expect outstanding optoelectronic properties that are not present in either material alone. Recently, tremendous efforts have been made to explore the possible combination of organic materials and inorganic 2D materials to create optoelectronic flexible devices of organic-inorganic van der Waals heterostructures with better properties and even new functionalities that are not accessible to us in other heterostructures. Over the past few years, many research groups all over the world have shown substantial progress and excellent results have been generated from such organic-2D material heterostructures. Among them, finding the possible combination of organics and 2D materials, investigating the properties of such heterostructures, and testing the functionality of the corresponding devices are the main targets currently in this field. The optimization of such devices with excellent performance is strongly relied on a fundamental understanding of the organic-2D material interface. For instance, the band alignment at the interface of organic and 2D TMD directly determine the basic physical properties of heterostructures. However, the interfacial features of such heterostructures, e.g., interfacial charge transfer, surface screening effect, molecular doping and so on, are barely known. It’s therefore vital to study the underlying physical mechanism. Here, we review the latest progress of this field first:(1) The fabrication of the organic-2D material heterostructures and the devices;(2) the performances of such devices. Substantially, the characterization methods and the related techniques are fully reviewed and discussed based on the specific demands of organic-2D material heterostructures. Three parts were included:(1) The characterization of interfacial material structure and molecular conformation;(2) interfacial electronic structure and defects;(3) carrier dynamics. The progress in this field including the utilization of several key techniques including transmission electron microscopy, scanning probe microscopy and transient absorption spectroscopy et al., are comprehensively reviewed, and the potential characterization and measurement methods are discussed in detail. Besides, the main challenges of such heterostructures in future flexible electronic and optoelectronic applications are discussed as well. We believe this review will therefore shed light on the booming the development of this field by guiding the selection of the proper materials, the creation of the desired organic-2D material heterostructures and the optimization of the devices.
作者 付少华 秦靓 张小娴 王瑞 唐东升 裘晓辉 Shaohua Fu;Liang Qin;Xiaoxian Zhang;Rui Wang;Dongsheng Tang;Xiaohui Qiu(Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education,College of Physics and Electronics Science,Hunan Normal University,Changsha 410081,China;Key Laboratory of Standardization and Measurement for Nanotechnology,Center for Excellence in Nanoscience,National Center for Nanoscience and Technology,Chinese Academy of Sciences,Beijing 100190,China;Academy of Advanced Interdisciplinary Studies,Peking University,Beijing 100871,China)
出处 《科学通报》 EI CAS CSCD 北大核心 2019年第4期393-410,共18页 Chinese Science Bulletin
基金 国家自然科学基金(11604064 11504062 11574081) 国家重点基础研究发展计划(2017YFA0205000) 中国科学院青年创新促进会(2018049)资助
关键词 有机-无机范德瓦尔斯异质结 界面 光电特性 扫描探针显微术 瞬态吸收光谱 organic-inorganic van der Waals heterostructures interface optoelectronic properties scanning probe microscopy transient absorption spectroscopy
  • 相关文献

参考文献2

二级参考文献36

  • 1Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.
  • 2Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, 1. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666--669.
  • 3Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197-200.
  • 4Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
  • 5Lembke, D.; Kis, A. Breakdown of high-performance monolayer MoS2 transistors. ACS Nano 2012, 6, 10070-- 10075.
  • 6Wang, H.; Yu, L.; Lee, Y. H.; Shi, Y.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674-4680.
  • 7Brivio, J.; Alexander, D. T. L.; Kis, A. Ripples and layers in ultrathin MoS2 membranes. Nano Lett. 2011, 11, 5148-5153.
  • 8Li, H.; Yin, Z.; He, Q.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 2012, 8, 63-67.
  • 9Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668-673.
  • 10Gourmelon, E.; Lignier, O.; Hadouda, H.; Couturier, G.; Bemde, J. C., Tedd, J.; Pouzet, J.; Salardenne, J. MS2 (M = W, Mo) photosensitive thin films for solar cells. Sol. Energy Mater. Sol. Cells 1997, 46, 115-121.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部