期刊文献+

导出范畴的n-黏合及上(下)黏合

n-Recollements and upper recollements of derived module categories
原文传递
导出
摘要 本文将Artin代数的无界导出范畴的1-黏合和2-黏合用其子范畴的上(下)黏合来刻画.作为应用,本文阐明了导出范畴的上(下)黏合与代数的整体维数(有限维数)的有限性之间的关系,这推广了Yin和Gao (2016)的结果.设A、B和C均为域k上的代数,且DA有一个关于DB和DC的3-黏合,本文证明了A是有限维的当且仅当B和C也如此. For Artin algebras, we characterize 1-recollements and 2-recollements of their unbounded derived categories in terms of upper(respectively lower) recollements of certain subcategories. As a result, we clarify the relationship between upper(respectively lower) recollements of derived categories and the finiteness of global(respectively finiteness) dimension of algebras, which generalizes a result of Yin and Gao(2016). Let A, B,and C be algebras over a field k, and DA admit a 3-recollement relative to DB and DC. We prove that A is finite-dimensional if and only if so are B and C.
作者 秦永云 Yongyun Qin
出处 《中国科学:数学》 CSCD 北大核心 2019年第1期11-20,共10页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11701321) 云南省应用基础研究(批准号:2016FD077) 贵州省科技计划黔科合基础(批准号:[2016]1038)资助项目
关键词 n-黏合 上(下)黏合 整体维数 有限维数 n-recollements upper (lower)recollements global dimension finitistic dimension
  • 相关文献

参考文献1

二级参考文献23

  • 1Angeleri Hugel, L., Konig, S., Liu, Q. H., et al.: Ladders and simplicity of derived module categories. arXiv: 131O.3479v2 (2015).
  • 2Beilinson, A., Bernstein, J., Deligne, P.: Faisceaux Pervers, Asterisque 100, Soc. Math. France, Paris, 1982.
  • 3Beilinson, A., Ginsburg, Y., Schechtman, Y.: Koszul duality. J. Geom. Phys., 5(3), 317-350 (1998).
  • 4Bondal, A., Orlov, D.: Semiorthogonal decompositions for algebraic varieties. arXiv: alg-geom/9506012vl (1995).
  • 5Chen, H. X., Xi, C. C.: Recollements of derived categories III: finitistic dimensions. arXiv: 1405.5090vl (2014).
  • 6Chen, X. W., Krause, H.: Expansions of abelian categories. J. Pure Appl. Algebra, 215, 2873-2883 (2011).
  • 7Cline, E. T., Parshall, B. J., Scott, L. L.: Algebraic stratification in representation categories. J. Algebra, 111, 504-521(1988).
  • 8Cline, E. T., Parshall, B. J., Scott, L. L.: Finite dimensional algebras and highest weight categories. J. Reine Angew. Math., 391, 85-99 (1988).
  • 9Gao, N., Psaroudakis, C.: Monomorphism Categories via Morita Rings, Gorenstein Algebras, AR Sequences and Derived Equivalences. arXiv:1508.02843 (2015).
  • 10Geigle, W., Lenzing, H.: Perpendicular categories with applications to representation and sheave. J. Alge- bra, 144(2), 273-343 (1991).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部