摘要
研究了径向基网络插值算法与3D曲面重构方法,分别从研究价值、插值理论、仿真等等方面做了详细分析,研究结果表明RBF-Network在逼近一维复杂的非线性函数时具有收敛速度快、精度高、泛化能力更强等优点.但在3D重构方面,基于RBF的单位分解法重构效果更好.
This paper studies the radial basis network interpolation algorithm and 3 D surface reconstruction method. We analyzed the research value, interpolation theory, simulati-oion and so on. The research results show that RBF-Network has the advantages of fast convergence, high precision and generalization ability when approaching one dim ensional complex nonlinear functions. However, in terms of 3 D reconstruction, the partition of unity method based on RBF is more effective.
作者
陈文兴
闫丽萍
崔英
李苗
CHEN Wen-xing;YAN Li-ping;CUI Ying;LI Miao(School of Mathematics and Statistics,Ningxia University,Yinchuan 750021,China;School of Mathematics and Statistics,Xidian University,Xi'an 710126,China)
出处
《数学的实践与认识》
北大核心
2019年第1期282-287,共6页
Mathematics in Practice and Theory
基金
宁夏大学研究生创新项目(GIP2018069)
关键词
非线性插值
泛化误差
Delauney三角
点云插值
3D曲面重构
nonlinear interpolation
generalization error
delauney triangle
point cloud interpolation
Reconstruction of 3D Surfaces