期刊文献+

径向基网络的非线性插值与3D点云曲面重构技术 被引量:2

Nonlinear Interpolation of Radial Basis Networks and 3D Point Cloud Surface Reconstruction Technique
原文传递
导出
摘要 研究了径向基网络插值算法与3D曲面重构方法,分别从研究价值、插值理论、仿真等等方面做了详细分析,研究结果表明RBF-Network在逼近一维复杂的非线性函数时具有收敛速度快、精度高、泛化能力更强等优点.但在3D重构方面,基于RBF的单位分解法重构效果更好. This paper studies the radial basis network interpolation algorithm and 3 D surface reconstruction method. We analyzed the research value, interpolation theory, simulati-oion and so on. The research results show that RBF-Network has the advantages of fast convergence, high precision and generalization ability when approaching one dim ensional complex nonlinear functions. However, in terms of 3 D reconstruction, the partition of unity method based on RBF is more effective.
作者 陈文兴 闫丽萍 崔英 李苗 CHEN Wen-xing;YAN Li-ping;CUI Ying;LI Miao(School of Mathematics and Statistics,Ningxia University,Yinchuan 750021,China;School of Mathematics and Statistics,Xidian University,Xi'an 710126,China)
出处 《数学的实践与认识》 北大核心 2019年第1期282-287,共6页 Mathematics in Practice and Theory
基金 宁夏大学研究生创新项目(GIP2018069)
关键词 非线性插值 泛化误差 Delauney三角 点云插值 3D曲面重构 nonlinear interpolation generalization error delauney triangle point cloud interpolation Reconstruction of 3D Surfaces
  • 相关文献

参考文献2

二级参考文献50

  • 1Sederberg T W.Implicit and Parametric Curves and Surfaces for Computer Aided Geometric Design[D].West Lafayette,USA:Purdue University,1983.
  • 2Sederberg T W,Anderson D,Goldman R.Implicit representation of parametric curves and surfaces[J].Computer Vision,Graphics,and Image Processing,1984,28(1):72-84.
  • 3Buchberger B.Bruno Buchberger's PhD thesis 1965:An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal[J].Journal of symbolic Computation,2006,41(3):475-511.
  • 4Buchberger B.Applications of Grobner bases in nonlinear computational geometry[M]// Kapur D,Mundy J.Geometric Reasoning.Cambridge,USA:MIT Press,1989:413-446.
  • 5Cox D,Little J,O'Shea D.Ideas,Varieties and Algorithms:An Introduction to Computational Algebraic Geometry and Commutative Algebra[M].New York,USA:Springer-Verlag,1992.
  • 6Li Z.Automatic Implicitization of Parametric Objects[J].MM Research Preprints,1989,4:54-62.
  • 7Sederberg T W,Chen F.Implicitization using moving curves and surfaces[C]//Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques.New York,NY,USA:ACM,1995:301-308.
  • 8Cox D,Sederberg T W,Chen F.The moving line ideal basis of planar rational curves[J].Computer Aided Geometric Design,1998,15 (8):803-827.
  • 9Chen F,Zheng J,Sederberg T W.The mu-basis of a rational ruled surface[J].Computer Aided Geometric Design,2001,18 (1):61-72.
  • 10Chen F,Cox D,Liu Y.Theμ-basis and implicitization of a rational parametric surface[J].Journal of Symbolic Computation,2005,39(6):689-706.

共引文献8

同被引文献25

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部