摘要
Using a Gleeble-1500D thermal-mechanical simulator,the hot-deformation behavior and critical strain in the dynamic recrystallization of SA508Gr.4N steel were investigated by compression tests from 1050 to 1250℃ with strain rates from 0.001 to 0.1 s^-1.Stress-strain curves were fitted by a nonlinear fitting method.Based on these tests,the flow stress constitutive equations of the work-hardening dynamical recovery period and dynamical recrystallization period Were established for SA508Gr.4N steel.The stress-strain curves of SA508Gr.4N steel predicted by the established models are in a good agreement with the experimental ones.Curves of ln θ -ε and --(a)(lnθ)/(a)ε-ε (where θ is the work-hardening rate and ε is true strain)were plotted from experimental data.A critical strain (εc)and a peak strain (εp)of dynamic recrystallization were obtained and exhibited a linear relationship,i.e.,εc =0.386εp.The predicted model of εc could be described by the equation of εc=1.604×10^-3Z^0.127.