Dual Lie Bialgebra Structures of Twisted SchrSdinger-Virasoro Type
摘要
In this paper,the structures of dual Lie bialgebras of twisted SchrSdinger-Virasoro type are investigated.By studying the maximal good subspaces,we determine the dual Lie coalgebras of the twisted SchrSdinger-Virasoro algebras.Then based on this,we construct the dual Lie bialgebra structures of this type.As by-products,four new infinite dimensional Lie algebras are obtained.
参考文献4
-
1SONG Guang’ai & SU Yucai College of Mathematics and Information Science, Shandong Institute of Business and Technology, Yantai 264005, China,Department of Mathematics, University of Science and Technology of China, Hefei 230026, China,Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China.Lie bialgebras of generalized Witt type[J].Science China Mathematics,2006,49(4):533-544. 被引量:22
-
2Yue Zhu WU,Guang Ai SONG,Yu Cai SU.Lie Bialgebras of Generalized Virasoro-like Type[J].Acta Mathematica Sinica,English Series,2006,22(6):1915-1922. 被引量:13
-
3SONG Guang'Ai,SU YuCai.Dual Lie bialgebra structures of Poisson types[J].Science China Mathematics,2015,58(6):1151-1162. 被引量:4
-
4Bin XIN~(1+) Guang-ai SONG~2 Yu-cai SU~3 1 Department of Mathematics,Shanghai Jiao Tong University,Shanghai 200240,China,2 College of Mathematics and Information Science,Shandong Institute of Business and Technology,Yantai 264005,China,3 Department of Mathematics,University of Science and Technology of China,Hefei 230026,China.Hamiltonian type Lie bialgebras[J].Science China Mathematics,2007,50(9):1267-1279. 被引量:8
二级参考文献21
-
1SONG Guang’ai & SU Yucai College of Mathematics and Information Science, Shandong Institute of Business and Technology, Yantai 264005, China,Department of Mathematics, University of Science and Technology of China, Hefei 230026, China,Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China.Lie bialgebras of generalized Witt type[J].Science China Mathematics,2006,49(4):533-544. 被引量:22
-
2SU Yucai & XU XiaopingDepartment of Mathematics, Shanghai Jiaotong University, Shanghai 200030, China,Institute of Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China.Central simple Poisson algebras[J].Science China Mathematics,2004,47(2):245-263. 被引量:5
-
3Shang Yuan LIN,Bin XIN.Representations of a Noncommutative Associative Algebra Related to Quantum Torus of Rank Three[J].Acta Mathematica Sinica,English Series,2005,21(6):1521-1524. 被引量:6
-
4Yue Zhu WU,Guang Ai SONG,Yu Cai SU.Lie Bialgebras of Generalized Virasoro-like Type[J].Acta Mathematica Sinica,English Series,2006,22(6):1915-1922. 被引量:13
-
5[1]Michaelis,W.,A class of infinite-dimensional Lie bialgebras containing the Virasoro algebras,Adv.Math.,1994,107:365-392.
-
6[2]Ng,S.H.,Taft,E.J.,Classification of the Lie bialgebra structures on the Witt and Virasoro algebras,J.Pure Appl.Algebra,2000,151:67-88.
-
7[3]Nichols,W.D.,The structure of the dual Lie coalgebra of the Witt algebra,J.Pure Appl.Algebra,1990,68:395-364.
-
8[4]Taft,E.J.,Witt and Virasoro algebras as Lie bialgebras,J.Pure Appl.Algebra,1993,87:301-312.
-
9[5]Dokovic,D.,Zhao,K.M.,Derivations,isomorphisms and second cohomology of generalized Witt algebras,Trans.Amer.Math.Soc.,1998,350:643-664.
-
10[6]Passman,D.,New simple infinite dimensional Lie algebras,J.Algebra,1998,206:682-692.
共引文献23
-
1LI JunBo1, 2 , SU YuCai3 & ZHU LinSheng21 Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, China 2 Department of Mathematics, Changshu Institute of Technology, Changshu 215500, China 3 Department of Mathematics, University of Science and Technology of China, Hefei 230026, China.2-Cocycles of original deformative Schrdinger-Virasoro algebras[J].Science China Mathematics,2008,51(11):1989-1999. 被引量:12
-
2ZHANG LiangYun College of Science,Nanjing Agricultural University,Nanjing 210095,China.Lie comodules and the constructions of Lie bialgebras[J].Science China Mathematics,2008,51(6):1017-1026.
-
3Yue Zhu WU,Guang Ai SONG,Yu Cai SU.Lie Bialgebras of Generalized Virasoro-like Type[J].Acta Mathematica Sinica,English Series,2006,22(6):1915-1922. 被引量:13
-
4辛斌,宋光艾,苏育才.广义Hamilton Lie双代数[J].中国科学(A辑),2007,37(5):617-628. 被引量:1
-
5Xiao Qing YUE,Yu Cai SU.Highest Weight Representations of a Family of Lie Algebras of Block Type[J].Acta Mathematica Sinica,English Series,2008,24(4):687-696. 被引量:1
-
6程永胜,张明亮.Block型李代数的系数在其模上的一阶上同调群[J].河南大学学报(自然科学版),2008,38(2):111-115. 被引量:4
-
7Junbo LI,Yucai SU,Bin XIN.Lie Bialgebras of a Family of Lie Algebras of Block Type[J].Chinese Annals of Mathematics,Series B,2008,29(5):487-500.
-
8张良云.Lie余模和Lie双代数的构造[J].中国科学(A辑),2008,38(3):249-259. 被引量:1
-
9李军波,苏育才,朱林生.Schrdinger-Virasoro变形代数的二上循环[J].中国科学(A辑),2008,38(8):841-850.
-
10Bin XIN~(1+) Guang-ai SONG~2 Yu-cai SU~3 1 Department of Mathematics,Shanghai Jiao Tong University,Shanghai 200240,China,2 College of Mathematics and Information Science,Shandong Institute of Business and Technology,Yantai 264005,China,3 Department of Mathematics,University of Science and Technology of China,Hefei 230026,China.Hamiltonian type Lie bialgebras[J].Science China Mathematics,2007,50(9):1267-1279. 被引量:8
-
1Liqiang Cai,Yunhe Sheng.Purely Hom-Lie bialgebras[J].Science China Mathematics,2018,61(9):1553-1566. 被引量:3
-
2Ernst-Erich DOBERKAT.Using coalgebras and the Giry monad for interpreting game logics a tutorial[J].Frontiers of Computer Science,2017,11(6):948-970.
-
3Dong LIU,Yufeng PEI.Deformations on the Twisted Heisenberg-Virasoro Algebra[J].Chinese Annals of Mathematics,Series B,2019,40(1):111-116. 被引量:4
-
4Li-Na Song,Abdenacer Makhlouf,Rong Tang.On Non-Abelian Extensions of 3-Lie Algebras[J].Communications in Theoretical Physics,2018,69(4):347-356. 被引量:2
-
5赵永生,朱林生.超Schr?dinger代数■(1/1)的上同调[J].数学学报(中文版),2019,62(1):59-70.
-
6Mengping WANG,Linli WU,Yongsheng CHENG.Local Cocycle 3-Hom-Lie Bialgebras and 3-Lie Classical Hom-Yang-Baxter Equation[J].Journal of Mathematical Research with Applications,2017,37(6):667-678.
-
7B.Cvetkovi?,D.Simi?.Near horizon OTT black hole asymptotic symmetries and soft hair[J].Chinese Physics C,2019,43(1):84-90.
-
8Xiong Zhen.One Parameter Deformation of Symmetric Toda Lattice Hierarchy[J].Communications in Mathematical Research,2018,34(1):47-53.
-
9Cheng Yong-sheng,Wu Lin-li,Wang Pan-yin,Du Xian-kun.Rota-Baxter Operators on 3-dimensional Lie Algebras and Solutions of the Classical Yang-Baxter Equation[J].Communications in Mathematical Research,2019,35(1):81-96. 被引量:1
-
10朱亚杰,朱红波.全空间R^(N)上的渐近线性Schrodinger方程[J].广东工业大学学报,2019,36(2):78-85.