期刊文献+

基于自混合干涉技术和双调制方法的振动测量

Vibration measurement based on self-mixing interference technique and double modulation method
下载PDF
导出
摘要 为了测量物体的微振动,提出一种基于自混合干涉(SMI)技术的新型调制方法--双调制。信号发生器产生正弦波输入到激光二极管(LD)控制器中,形成电流调制;三角波驱动电光调制器(EOM)实现相位调制;将两种调制方法相结合形成双调制技术。首先,用双调制方法调制物体未振动时的SMI信号,并使用五步相移算法解调;然后,用双调制方法与五步相移算法对物体振动时的SMI信号进行调制与解调,根据物体未振动和振动时的相位得到只由振动引起的相位,进而重构振动物体的微位移。实验结果表明:对峰峰值为2 000nm、频率为10Hz的正弦振动进行测量时,得到的最大重构误差为79.3nm。 In order to measure the micro-vibration of an object,a new modulation method based on self-mixing interference(SMI)technology,double modulation,is proposed.A signal generator is used to generate a sine wave input into a laser diode(LD)controller to form a current modulation;a triangular wave is used to drive an electro-optical modulator(EOM)to achieve phase modulation;and the two modulation methods are combined to form a double modulation technique.First,the SMI signal is modulated by the double modulation method and demodulated using the five-step phase shift algorithm when the object is not vibrating.Then,the SMI signal is modulated and demodulated by the double modulation method and the five-step phase shift algorithm when the object vibrating.The phase caused by the vibration is obtained according to the phase when the object is not vibrating and vibrating,and the micro-displacement of the vibrating object is reconstructed.The experimental results show that the maximum reconstructed error of the sinusoidal vibration with a peak-topeak value of 2 000 nm and a frequency of 10 Hz is 79.3 nm.
作者 宋欣敏 谭仁雪 Song Xinmin;Tan Renxue(College of Electrical and Information Engineering,Northeast Petroleum University,Daqing 163318,China)
出处 《国外电子测量技术》 2018年第11期15-18,共4页 Foreign Electronic Measurement Technology
基金 东北石油大学研究生创新科研项目(YJSCX2017-029NEPU)资助
关键词 干涉测量 振动 双调制 五步相移算法 interferometry vibration double modulation five-step phase shift algorithm
  • 相关文献

参考文献3

二级参考文献49

  • 1郭冬梅,谈苏庆,王鸣.正弦相位调制自混合干涉微位移测量精度分析[J].光学学报,2006,26(6):845-850. 被引量:20
  • 2Y. Fan, Y. Yu, J. Xi, and J. F. Chicharo, Appl. Opt. 50, 5064 (2011).
  • 3S. Donata Laser Photon. Rev. 6, 393 (2012).
  • 4G. Giuliani, S. Bozzi-Pietra, and S. Donati, Meas. Sci. Technol. 14, 24 (2003).
  • 5M. Norgia and C. Svelto, IEEE Trans. Instrum. Meas. 57, 1703 (2008).
  • 6S. Donati, M. Norgia, and G. Giuliani, Appl. Opt. 45, 7264 (2006).
  • 7M. Norgia, A. Pesatori, M. Tanelli, and M. Lovera, IEEE Trans. Instrum. Meas. 59, 1368 (2010).
  • 8P. A. Roos, M. Stephens, and C. E. Wieman, Appl. Opt. 35, 6754 (1996).
  • 9U. Zabit, T. Bosch, and F. Bony, IEEE Sens. J. 9, 1879 (2009).
  • 10C. Li, Z. Huang, and X. Sun, Chin. Opt. Lett. 11, 21201 (2013).

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部