期刊文献+

在透射电子显微镜中直接观察材料锂化动力学行为 被引量:1

Directly observe the kinetic behavior of lithium inside a transmission electron microscope
下载PDF
导出
摘要 锂离子电池的电极材料是决定其性能的关键因素之一,电极材料的储锂与失效机制是开发高性能锂离子电池的重要基础科学问题。本文在透射电子显微镜内以目标材料为工作电极搭建锂离子半电池,利用透射电子显微镜的原子结构表征技术对电极材料在锂化动态反应过程中的形貌、成分、结构等进行原位表征,开展锂离子动力学过程和电化学储能机制研究。结果表明,硅负极纳米线的锂化以及能源利用率存在明显的尺寸效应,在二维材料MoS2中首次观察到了锂离子嵌入导致的2H-1T的相转变过程。本研究对理解锂离子电池工作的原子机制和开发新型锂离子电池材料具有重要意义。 This work mainly focuses on realizing lithium battery inside the transmission electron microscope(TEM) to measure and understand electrochemical lithiation mechanisms in electrode nanomaterials. Based on the use of a nanomanipulator to assemble an electrochemical cell inside a TEM thatconsists of battery materials,e. g.,Si nanowires and MoS2 nanosheets,a Li-containing counter electrode,and an ionic liquid electrolyte or a solid-state electrolyte(Li2 O). To directly capture the dynamic structural changes of electrode materials during lithiation process,the lithium cells were characterized via realtime in-situ high resolution transmission electron microscopy(HRTEM) imaging,electron diffraction(ED) and electron energy-loss spectroscopy(EELS). Based on the in-situ TEM method,we accomplished several implements related to understanding Li-ion battery electrochemical mechanism at the atomic to nano-scale and we identified the remarkable electrochemical mechanisms associated with anode lithiation and delithiation.
作者 王立芬 白雪冬 WANG Lifen;BAI Xuedong(Beijing National Laboratory for Condensed Matter Physics,Institute of Physics, Chinese Academy of Sciences,Beijing 100190,China)
出处 《中国体视学与图像分析》 2018年第4期333-342,共10页 Chinese Journal of Stereology and Image Analysis
基金 国家自然科学基金资助(No.11474337 21773303 51421002)
关键词 锂化动力学 透射电子显微学 锂离子电池 负极材料 lithiation dynamics transmission electron microscopy lithium ion battery anode materials
  • 相关文献

参考文献2

二级参考文献33

  • 1Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359-367.
  • 2Chan C K, Peng H L, Liu G, et al. High performance lithium battery anodes using silicon nanowires. Nat Nanotechnol, 2008, 3: 31-35.
  • 3Zhao K J, Pharr M, Vlassak J J, et al. Fracture of elcetrodes in lithium-ion batteries caused by fast charging. J Appl Phys, 2010, 108: 073517.
  • 4Wang H F, Jang Y, Huang B Y, et al. TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries. J Electrochem Soc, 1999, 146: 473-480.
  • 5Bhattacharya S, Riahi A R, Alpas A T. In-situ observations of lithiation/de-lithiation induced graphite damage during electrochemical cycling. Scripta Mater, 2011, 64: 165-168.
  • 6Arara P, White R E, Doyle M. Capacity fade mechanisms and side reactions in lithium ion batteries. J Electroche Soc, 1998, 145: 3647-3667.
  • 7Idota Y, Mishima M, Miyaki Y, et al. European Pat, 1995, 651: 450A1.
  • 8Idota Y, Kubota T, Matsufuji A, et al. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science, 1997, 276: 1395-1397.
  • 9Brousse T, Retouxf R, Herterich U, et al. Thin-film crystalline SnO2-lithium electrodes. J Electrochem Soc, 1998, 145: 1-4.
  • 10Wang Y, Zeng H C, Lee J Y. Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv Mater, 2006, 18: 645-649.

共引文献6

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部