期刊文献+

基于QPSO-RBF神经网络的混合交通流车速预测模型 被引量:12

Road Speed Prediction Model Based on QPSO-RBF Neural Network in Mixed Traffic Flow
原文传递
导出
摘要 为解决传统道路车速标定以单一车型浮动车而忽略城市道路车型复杂导致实际应用误差较大等问题,根据车型分类标准将道路运行车辆分为小客车、出租车、公交车、大型客货车四类,从车辆性能、运输要求两方面对全车型车速进行因素分析,以浮动车数据为基础,利用粒子群算法优化RBF神经网络并对其余车型车速进行预测,以粒子的维度分量作为RBF网络的权值和阈值,以神经网络均方误差的倒数作为粒子群算法的适应度函数并训练神经网络使其达到均方误差最小化。实例分析表明:粒子群算法有效降低了RBF神经网络的预测误差,预测模型对小客车、出租车、大型客货车的预测平均相对误差分别为9.21%、10.83%、12.78%,经算法计算出的道路车速精度优于基于浮动车的道路车速,且平均绝对误差控制在5km/h以内,达到实际应用精度要求。 In order to solve the problem that the traditional road speed calibration uses a single model of floating vehicles and ignores the complexity of urban road vehicles which leads to large error during the practical application,according to the vehicle classification standard,the road vehicles are divided into four categories:car,taxi,bus,and large passenger and freight cars.Analysis of full vehicles speed is conducted from two aspects of vehicle performance and transportation requirements,and based on the floating car data,the RBF neural network is optimized by particle swarm optimization,and the speed of other vehicles is predicted,the dimension component of the particle is used as the weight and threshold of the RBF network,and the mean square error of the neural network is used as the fitness function of the particle swarm optimization algorithm,and the neural network is trained to minimize the mean square error.Example analysis shows that:particle swarm optimization effectively reduces the prediction error of RBF neural network,the average relative errors of prediction models for car,taxi and large passenger and freight cars are 9.21%,10.83% and 12.78%,the accuracy of road speed calculated by the algorithm is better than that based on the floating vehicle,and the average absolute error is less than 5 km/h,which satisfies the requirement of practical application.
作者 张晓阳 徐韬 张宜华 张磊 ZHANG Xiao-yang;XU Tao;ZHANG Yi-hua;ZHANG Lei(Chongqing Municipal Research Institute of Design,Chongqing 400074,China)
出处 《公路》 北大核心 2019年第1期147-152,共6页 Highway
基金 重庆市科研创新项目 项目编号CYS15188
关键词 交通工程 混合交通 车速预测 神经网络 粒子群 traffic engineering mixed traffic speed prediction neural network particle swarm optimization
  • 相关文献

参考文献3

二级参考文献29

  • 1Addison, Low Paul S, David J. Order and chaos in the dynamics of vehicle platoons[J]. Traffic Engineering & Control, 1996, 37(7-8):456-459.
  • 2Daganzo C F, Cassidy M J, Bertini R L. Possible explanations of phase transitions in highway traffic [ J ]. Transportation Research , Part A , 1999, 33(5): 365-379.
  • 3Jiang Y. Traffic capacity speed and queue-discharge rate of Indiana's four-lane freeway work zones[A]. In: Transportation Research Record 1657, TRB, National Research Council[ C]. Washington D C, 1999.39 - 44.
  • 4Schonfeld P, Chien S. Optimal work zone lengths for two-lane highways [J]. Journal of Transportation Engineering,Urban Transportation Division, ASCE , 1999, 125(1): 21-29.
  • 5Nam D D, Drew D R. Analyzing freeway traffic under congestion: traffic dynamics approach[ J]. Journal of Transportation Engineering, Urban Transportation Division, ASCE ,1998, 12,4(3): 208-212.
  • 6SRINIVASAN K,JOVANIS P.Determination of the number of probe vehicles required for reliable travel time measurement in an urban network[J].Transportation Research Record,1996(1537):15-22.
  • 7YGNACE J L,CHRIS D,YIM Y B,et al.Travel time estimates on the bay area network by using cellular phones as probes[R].Berkeley:California PATH,2000.
  • 8KUMUD KS,JEAN W.Vehicles as Probes[R].Berkeley:California PATH,1995.
  • 9北京工业大学.交通诱导(车辆导航)系统技术与设备研究总报告[R].北京:北京工业大学建筑工程学院,2005:12-15.
  • 10杨兆升,王媛.基于手机浮动车的交通信息采集方法研究[C]//第一届中国智能交通年会论文集.上海:同济大学出版社,2005.321-326.

共引文献167

同被引文献81

引证文献12

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部