期刊文献+

EDTA-assisted hydrothermal synthesis of flower-like CoSe_2 nanorods as an efficient electrocatalyst for the hydrogen evolution reaction 被引量:2

EDTA-assisted hydrothermal synthesis of flower-like CoSe_2 nanorods as an efficient electrocatalyst for the hydrogen evolution reaction
下载PDF
导出
摘要 Hydrogen evolution reaction(HER) is a prospective method to generate pure hydrogen. The development of superior electrocatalysts based on earth-abundant materials, plays a critical role in the future.CoSe_2, one of the earth-abundant electrocatalysts, has been proved to be a promising catalyst for hydrogen generation. In our work, flower-like CoSe_2 nanorods with high quality are successfully synthesized through a facile ethylenediaminetetraacetic acid ligand(EDTA)-assisted hydrothermal process. The flower-like CoSe_2 nanorods show the brilliant electrochemical HER performance with 100 mA cm^(-2) at overpotential of 273 m V, a small Tafel slope of 35 mV dec^(-1) and strong durability in acid solution. The sparkly HER catalytic activity of CoSe_2 can be ascribed to its particular structure with large surface area and abundant active sites. Therefore, this work offers an outstanding candidate for improving hydrogen production capabilities by water electrolysis. Hydrogen evolution reaction(HER) is a prospective method to generate pure hydrogen. The development of superior electrocatalysts based on earth-abundant materials, plays a critical role in the future.CoSe_2, one of the earth-abundant electrocatalysts, has been proved to be a promising catalyst for hydrogen generation. In our work, flower-like CoSe_2 nanorods with high quality are successfully synthesized through a facile ethylenediaminetetraacetic acid ligand(EDTA)-assisted hydrothermal process. The flower-like CoSe_2 nanorods show the brilliant electrochemical HER performance with 100 mA cm^(-2) at overpotential of 273 m V, a small Tafel slope of 35 mV dec^(-1) and strong durability in acid solution. The sparkly HER catalytic activity of CoSe_2 can be ascribed to its particular structure with large surface area and abundant active sites. Therefore, this work offers an outstanding candidate for improving hydrogen production capabilities by water electrolysis.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第1期95-100,共6页 能源化学(英文版)
基金 financially supported by the National Natural Science Foundation of China (No. 21675131, 21273174) the Municipal Science Foundation of Chongqing City (No. CSTC2015jcyjB50001)
关键词 FLOWER structure CoSe2 ELECTROCATALYST Hydrogen evolution Flower structure CoSe_2 Electrocatalyst Hydrogen evolution
  • 相关文献

同被引文献7

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部