期刊文献+

Potential Bands of Sentinel-2A Satellite for Classification Problems in Precision Agriculture 被引量:8

Potential Bands of Sentinel-2A Satellite for Classification Problems in Precision Agriculture
原文传递
导出
摘要 Various indices are used for assessing vegetation and soil properties in satellite remote sensing applications. Some indices,such as normalized difference vegetation index(NDVI) and normalized difference water index(NDWI), are capable of simply differentiating crop vitality and water stress. Nowadays, remote sensing capabilities with high spectral, spatial and temporal resolution are available to analyse classification problems in precision agriculture. Many challenges in precision agriculture can be addressed by supervised classification, such as crop type classification, disease and stress(e.g., grass, water and nitrogen) monitoring. Instead of performing classification based on designated indices, this paper explores direct classification using different bands information as features. Land cover classification by using the recently launched Sentinel-2A image is adopted as a case study to validate our method. Four approaches of featured band selection are compared to classify five classes(crop, tree, soil, water and road) with the support vector machines(SVMs)algorithm, where the first approach utilizes traditional empirical indices as features and the latter three approaches adopt specific bands(red, near infrared and short wave infrared) related to indices, specific bands after ranking by mutual information(MI), and full bands of on-board sensors as features, respectively. It is shown that a better classification performance can be achieved by directly using the selected bands after MI ranking compared with the one using empirical indices and specific bands related to indices, while the use of all 13 bands can marginally improve the classification accuracy than MI based one. Therefore, it is recommended that this approach can be applied for specific Sentinel-2A image classification problems in precision agriculture. Various indices are used for assessing vegetation and soil properties in satellite remote sensing applications. Some indices,such as normalized difference vegetation index(NDVI) and normalized difference water index(NDWI), are capable of simply differentiating crop vitality and water stress. Nowadays, remote sensing capabilities with high spectral, spatial and temporal resolution are available to analyse classification problems in precision agriculture. Many challenges in precision agriculture can be addressed by supervised classification, such as crop type classification, disease and stress(e.g., grass, water and nitrogen) monitoring. Instead of performing classification based on designated indices, this paper explores direct classification using different bands information as features. Land cover classification by using the recently launched Sentinel-2A image is adopted as a case study to validate our method. Four approaches of featured band selection are compared to classify five classes(crop, tree, soil, water and road) with the support vector machines(SVMs)algorithm, where the first approach utilizes traditional empirical indices as features and the latter three approaches adopt specific bands(red, near infrared and short wave infrared) related to indices, specific bands after ranking by mutual information(MI), and full bands of on-board sensors as features, respectively. It is shown that a better classification performance can be achieved by directly using the selected bands after MI ranking compared with the one using empirical indices and specific bands related to indices, while the use of all 13 bands can marginally improve the classification accuracy than MI based one. Therefore, it is recommended that this approach can be applied for specific Sentinel-2A image classification problems in precision agriculture.
出处 《International Journal of Automation and computing》 EI CSCD 2019年第1期16-26,共11页 国际自动化与计算杂志(英文版)
基金 supported by Science and Technology Facilities Council (STFC) under Newton fund (No. ST/N006852/1) Chinese Scholarship Council (CSC) for supporting his study in the UK
关键词 Sentinel-2A REMOTE sensing image classification supervised learning PRECISION AGRICULTURE Sentinel-2A remote sensing image classification supervised learning precision agriculture
  • 相关文献

同被引文献106

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部