期刊文献+

U-Nb合金中夹杂物的纳米压痕表征 被引量:2

Nanoindentation Characterization of Inclusions in U-Nb Alloy
原文传递
导出
摘要 采用纳米压痕技术对铸态U-5.5Nb合金中Nb_2C、U(C,N)以及基体力学性能进行了表征,根据获得的硬度值计算了屈服强度和塑性指数。实验结果表明Nb_2C夹杂物的弹性模量和硬度最大,而U(C,N)夹杂物的弹性模量和硬度远小于Nb_2C但明显高于基体;计算结果显示Nb_2C夹杂物屈服强度最高而塑性指数值最小,倾向于发生弹性变形,U(C,N)夹杂物强度低但塑性指数值最大,更容易发生塑性变形并发生破裂。基体多步循环加载获得的弹性模量和硬度值与单次加载基本一致,并且弹性模量值和文献中报道的单向拉伸实验测得的值相符。 Mechanical properties of the Nb2C and U(N,C)inclusions and matrix in the U-5.5Nb alloy were characterized by nanoindentation and the yield strength and plasticity index were calculated from the obtained hardness.The result from experiment shows that the Nb2C inclusion has the highest elastic modulus and hardness,while the corresponding values of the U(N,C)inclusion are far less than those in the Nb2C inclusion but higher than those of matrix.Moreover,the result calculated from hardness shows that the yield strength of the Nb2C inclusion is the highest,but the plasticity index is the lowest,which reveals that the Nb2C inclusion inclines to elastic deformation.However,the yield strength of the U(N,C)inclusion is low and the plasticity index of the U(N,C)is the highest,which reveals that the U(N,C)inclusion prefers to plastic deformation and also can break easily.Elastic modulus and hardness from multi-cycle load/unload test are close to those obtained by single load/unload test.In addition,the elastic modulus obtained from nanoindentation accord with the value obtained by tensile test in the literature.
作者 陈冬 李瑞文 马荣 陈向林 王震宏 苏斌 张新建 蒙大桥 Chen Dong;Li Ruiwen;Ma Rong;Chen Xianglin;Wang Zhenhong;Su Bin;Zhang Xinjian;Meng Daqiao(China Academy of Engineering Physics,Jiangyou 621907,China)
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2019年第1期165-170,共6页 Rare Metal Materials and Engineering
基金 中国工程物理研究院重点项目(TB120301)
关键词 U-5.5Nb合金 纳米压痕 夹杂物 力学性能 U-5.5Nb alloy nanoindentation inclusions mechanical property
  • 相关文献

参考文献3

二级参考文献10

  • 1吕学超,汪小琳,鲜晓斌,郎定木,肖红,张延志.铀表面Al-Zn镀层的结构和保护性能[J].稀有金属材料与工程,2005,34(4):586-588. 被引量:2
  • 2Sunwoo A J, Hiromoto D S. Journal of Nuclear Materials[J], 2004, 327:37.
  • 3Hsiung L, Zhou Jikou. UCRL-TR-235973[R]. Livermore: Lawrence Livermore National Laboratory, 2007.
  • 4Haekenberg R E, Hemphill G M. LA-14389[R]. New Mexico: Los Alamos National Laboratory, 2009.
  • 5Hsiung L M, Zhou J. UCRL-TR-224432[R]. Lawrence: Livermore National Laboratory, Livermore California, 2006.
  • 6John Burke J et al. Translated by Shi Qi(石琪). Physical Metallurgy of Uranium and Uranium Alloys(铀合金物理冶金)[M]. Beijing: Atomic Energy Press of China, 1983.
  • 7LiuQin(刘勤).Superplasticity of Metal(金属的超哪性)[M].Shanghai:Shanghai Jiaotong University Press,1989:102.
  • 8Ludtka G M. Metallurgical Transactions A-Physical Metallurgy and Materials Science[J], 1993, 24A : 379.
  • 9LiuXiaoping(刘小苹),ZhouYichun(周益春),WangChunkui(王春奎)et al.金属学报,1994,30(4):A181.
  • 10何立峰,黄海,杨建雄,任大鹏,张延志.U-Nb合金的可逆塑性变形及其消除方法[J].中国有色金属学报,2011,21(8):1904-1909. 被引量:3

共引文献2

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部