期刊文献+

多孔石墨烯制备及其纳米复合材料的研究进展 被引量:2

Review on the preparation of porous graphene and its nanocomposite
下载PDF
导出
摘要 多孔石墨烯是一种在石墨烯二维纳米基面上具有纳米孔隙或三维网络结构的多孔碳材料,不仅保留了石墨烯的本征性质,更赋予材料较大的可接触面积和丰富的孔隙结构,这些孔隙的存在有利于物质运输和筛分,使得石墨烯及其复合材料在纳米粒子负载、物质运输、吸附、分离等方面展示出广阔的应用前景。综述了多孔石墨烯的制备方法,包括活化法、冷冻干燥法、模板法和沉积法,以及多孔石墨烯在超级电容器、锂-氧电池、吸附、分离领域的应用现状,并展望了未来的发展方向。 Porous graphene was a family of porous carbon with three-dimension network structures,which was prepared based on graphene with two-dimension tructures.Porous graphene possesses some natural properties of grapheme,and larger surface area as well as abundant pores.These nanopores facilitate transportation and separation of molecules,which makes the porous graphene and porous graphene based nanocomposites potential in nanoparticles loading,transportation,absorption and separation etc.The synthesis method of porous graphene including activation method,freeze-drying method,hard and soft template method,as well as deposition method were reviewed.Besides,the applications and outlook of porous graphene in supercapacitors,Li-O2 cells,absorption and separation were introduced.
作者 吴蓬勃 王成君 朱洪宇 孙寒雪 Wu Pengbo;Wang Chengjun;Zhu Hongyu;Sun Hanxue(China Chemial Engineering Second Construction Corporation,Taiyuan 030021;School of Chemical Technology,Northwest Minzu University,Lanzhou 730030;College of Petrochemical Technology,Lanzhou University of Technology,Lanzhou 730050)
出处 《化工新型材料》 CAS CSCD 北大核心 2019年第1期6-9,共4页 New Chemical Materials
基金 甘肃省自然科学基金项目(1610RJYA001)
关键词 石墨烯 多孔石墨烯 纳米复合材料 吸附分离 graphene porous graphene nanocomposite material adsorption and separation
  • 相关文献

参考文献1

二级参考文献44

  • 1Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339-1339.
  • 2Li, X, M.; Zhao, T. S.; Wang, K. L.; Yang, Y.; Wei, J. Q.; Kang, F. Y.; Wu, D. H.; Zhu, H. W. Directly drawing self- assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties. Langmuir 2011, 27, 12164-12171.
  • 3Dong, Z. L.; Jiang, C. C.; Cheng, H. H.; Zhao, Y.; Shi, G. Q.; Jiang, L.; Qu, L. T. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv. Mater, 2012, 24, 1856-1861.
  • 4Xu, Z.; Gao, C. Graphene chiral liquid crystals and macro- scopic assembled fibres. Nat. Commun. 2011, 2, 571,.
  • 5Hu, C. G.; Zhao, Y.; Cheng, H. H.; Wang, Y. H.; Dong, Z. L.; Jiang, C. C.; Zhai, X. Q.; Jiang, L.; Qu, L. T. Graphene microtubings: Controlled fabrication and site-specific functionalization. Nano Lett. 2012, 12, 5879-5884.
  • 6Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D., Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457-460.
  • 7Li, X.; Zhang, R. J.; Yu, W. J.; Wang, K. L.; Wei, J. Q.; Wu, D. H.; Cao, A. Y.; Li, Z. H.; Cheng, Y.; Zheng, Q+ S. et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep. 2012, 2, 870.
  • 8Hu, H.; Zhao, Z. B.; Zhang, R.; Bin, Y. Z.; Qiu, J. S. Polymer casting of ultralight graphene aerogels for the production of conductive nanocomposites with low filling content. J. Mater. Chem. A 2014, 2, 3756-3760.
  • 9Hu, H.; Zhao, Z. B.; Wan, W. B.; Gogotsi, Y.; Qiu, J. S. Ultralight and highly compressible graphene aerogels. Adv. Mater. 2013, 25, 2219-2223.
  • 10Zhao, Y.; Hu, C. G.; Hu, Y.; Cheng, H. H.; Shi, G. Q.; Qu, L. T. A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem. Int. Ed. 2012, 51, 11371-11375.

共引文献11

同被引文献21

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部