期刊文献+

水空跨介质航行器俯冲过程航迹角控制研究 被引量:3

Research on flight path angle control of trans-media aerial underwater vehicle during diving process
原文传递
导出
摘要 基于神经网络自适应控制方法,研究了变体跨介质航行器俯冲过程航迹角控制问题。针对航迹角动态方程中出现的纯反馈形式,采用微分滤波的方法克服"代数环"问题;采用最小学习参数方法减少神经网络参数在线更新个数,降低计算载荷;采用动态面方法克服反步法虚拟控制的"微分爆炸"问题。仿真结果表明,所设计的控制器能够实现航行器在俯冲过程中对目标航迹角的跟踪,跟踪误差小于2°。 Based on the neural network adaptive control method,the problem of flight path angle control during water-entry diving process was designed for the trans-media aerial underwater vehicle.In view of the pure feedback form in the dynamic equation of flight path angle,the filter technique was used to overcome the ‘close loop’problem.The dynamic surface control( DSC) and minimal learning parameters(MLP) techniques were employed to solve the problems of ‘explosion of complexity’in the backstepping method and the online updated parameters being too much.The simulation results show that the designed controller can track the desired flight path angle well during diving process.The tracking error is less than 2°.
作者 谭骏怡 胡俊华 马宗成 陈国明 冯金富 TAN Jun-yi;HU Jun-hua;MA Zong-cheng;CHEN Guo-ming;FENG Jin-fu(School of Aeronautics Engineering,Air Force Engineering University,Xi'an 710038,China)
出处 《飞行力学》 CSCD 北大核心 2019年第1期34-38,49,共6页 Flight Dynamics
基金 国家自然科学基金资助(51779263)
关键词 最小学习参数 动态面 自适应神经网络控制 变后掠翼 minimal learning parameter dynamic surface control adaptive NN control variable sweep wing
  • 相关文献

参考文献5

二级参考文献16

  • 1Garv Lebbv.Human Memory/Learning Inspired Control Method for Flapping-Wing Micro Air Vehicles[J].Journal of Bionic Engineering,2010,7(2):127-133. 被引量:3
  • 2Du Sha, Ang Haisong. Design and feasibility analyses of mor- phing airfoil used to control flight attitude [ J ]. Journal of Me- chanical Engineering,2012,58 (1) :46-55.
  • 3Abdulrahim M, Lind R. Control and simulation of a multi-role morphing micro air vehicle [ C ]//AIAA Guidance, Navigation, and Control Conference. San Francisco: American Institute of Aeronautics and Astronautics,2005:6408-6426.
  • 4Baldelli D H, Lee D H, Pena R S, et al. Practical modeling, con- trol and simulation of an aeroelastic morphing uav [ C ]//AIAA Structures,Structural Dynamics,and Materials Conference. Hawaii: American Institute of Aeronautics and Astronautics, 2007 : 6481-6499.
  • 5Seigler T M, Neal D A. Analysis of transition stability for mor- phing aircraft [ J ]. Journal of Guidance, Control, and Dynamics, 2009,32(6) :1947-1953.
  • 6Ward D G, Monaco J F. System identification for retrofit reconfig- urable control of an F/A-18 [ J]. Journal of Aircraft, 2005, 42(1) :63-72.
  • 7Ward D G, Barron R L. A self-designing receding horizon optimal flight controller[ C ]//Proceedings of the 1995 American Control Conference. Washington : Barton Associates, 1995:3490-3494.
  • 8Seigler T M, Neal D A, Bae J S, et al. Modeling and flight control of large-scale morphing aircraft [ J ]. Journal of Aircraft, 2007,44 (4) :1077-1084.
  • 9Stevens B L, Lewis F L. Aircraft control and simulation [ M ]. New York : Wiley-Interscience ,2003:385 -386.
  • 10Joon Hyuk Park Kwang-Joon Yoon.Designing a Biomimetic Ornithopter Capable of Sustained and Controlled Flight[J].Journal of Bionic Engineering,2008,5(1):39-47. 被引量:6

共引文献62

同被引文献31

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部