期刊文献+

Coincidence Wecken Property for Nilmanifolds

Coincidence Wecken Property for Nilmanifolds
原文传递
导出
摘要 Let f, g: X → Y be maps from a compact infra-nilmanifold X to a compact nilmanifold Y with dim X ≥ dim Y. In this note, we show that a certain Wecken type property holds, i.e., if the Nielsen number N(f, g) vanishes then f and g are deformable to be coincidence free. We also show that if X is a connected finite complex X and the Reidemeister coincidence number R(f, g) = ∞ then f ~ f' so that C(f', g) = {x ∈ X | f'(x) = g(x)} is empty. Let f, g: X → Y be maps from a compact infra-nilmanifold X to a compact nilmanifold Y with dim X ≥ dim Y. In this note, we show that a certain Wecken type property holds, i.e., if the Nielsen number N(f, g) vanishes then f and g are deformable to be coincidence free. We also show that if X is a connected finite complex X and the Reidemeister coincidence number R(f, g) = ∞ then f ~ f' so that C(f', g) = {x ∈ X | f'(x) = g(x)} is empty.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2019年第2期239-244,共6页 数学学报(英文版)
基金 supported in part by Projeto Temático Topologia Algébrica Geométrica e Differencial(Grant No.2016/24707-4)
关键词 Nielsen COINCIDENCE THEORY NILMANIFOLDS Nielsen coincidence theory nilmanifolds
  • 相关文献

参考文献1

二级参考文献28

  • 1Goncalves, D., Jezierski, J.: The Lefschetz coincidence formula on non-orientable manifolds. Fund. Math.,153, 1-23 (1997)
  • 2Fuller, F. B.: The homotopy theory of coincidences. Ann. Math., 59, 219-226 (1954)
  • 3Fadell, E.: On a coincidence theorem of F. B. Fuller. Pacific J. Math., 15, 825-834 (1965)
  • 4Goncalves, D.: Coincidence theory for maps from a complex to a manifold. Top. Appl., 92, 63-77 (1999)
  • 5Borsari, L. D., Gonqalves, D. L.: A Van Kampen Type theorem for coincidence. Top. Appl., 101, 149-160(2000)
  • 6Fadell, E., Husseini, S.: Fixed point theory for non simply connected manifolds. Topology, 20, 53-92 (1981)
  • 7Dobrenko, R.: The obstruction to the deformation of a map out of a subspace. Dissertationes Math.(Rozprawy Mat.), 295, 29 (1990)
  • 8Schirmer, H.: Mindestzahlen von Koinzidenzpunkten. J. Reine Angew. Math., 194, 21-39 (1955)
  • 9Hatcher, A., Quinn, F.: Bordism invariants of intersections of submanifolds. Trans. Amer. Math. Soc.,200, 327-344 (1974)
  • 10Dimovski, D., Geoghegan, R.: One-parameter fixed point theory. Forum Math., 2, 125-154 (1990)

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部