摘要
Let E■R be an interval. By studying an admissible family of branching mechanisms{ψt,t ∈E} introduced in Li [Ann. Probab., 42, 41-79(2014)], we construct a decreasing Levy-CRT-valued process {Tt, t ∈ E} by pruning Lévy trees accordingly such that for each t ∈E, Tt is a ψt-Lévy tree. We also obtain an analogous process {Tt*,t ∈E} by pruning a critical Levy tree conditioned to be infinite. Under a regular condition on the admissible family of branching mechanisms, we show that the law of {Tt,t ∈E} at the ascension time A := inf{t ∈E;Tt is finite} can be represented by{Tt*,t∈E}.The results generalize those studied in Abraham and Delmas [Ann. Probab., 40, 1167-1211(2012)].
Let E?R be an interval. By studying an admissible family of branching mechanisms{ψt,t ∈E} introduced in Li [Ann. Probab., 42, 41-79(2014)], we construct a decreasing Levy-CRT-valued process {Tt, t ∈ E} by pruning Lévy trees accordingly such that for each t ∈E, Tt is a ψt-Lévy tree. We also obtain an analogous process {Tt*,t ∈E} by pruning a critical Levy tree conditioned to be infinite. Under a regular condition on the admissible family of branching mechanisms, we show that the law of {Tt,t ∈E} at the ascension time A := inf{t ∈E;Tt is finite} can be represented by{Tt*,t∈E}.The results generalize those studied in Abraham and Delmas [Ann. Probab., 40, 1167-1211(2012)].
基金
supported by NSFC(Grant No.11801075)
supported by NSFC(Grant Nos.11671041,11531001 and 11371061)
the Fundamental Research Funds for the Central Universities in UIBE(Grant No.16QN04)