摘要
为了预测基坑周围地表道路的沉降,该文结合常州恒生科技园二期建设工程实例,提出了灰色GM(1,1)与神经网络模型组合构成灰色神经网格模型。基于层次分析法,选取建筑物沉降、围护结构顶部水平位移、竖向位移、地下水位作为影响地表道路沉降的主要因素,并将其作为模型的输入因素。研究结果表明,灰色神经网络模型结合三次样条插值建立的组合预测模型,具有较高的预测精度,有利于基坑的预测、预警,有效地保障了基坑施工的安全。
In order to predict the settlement of road surface around foundation pit,the grey neural network model combined by GM( 1,1) and neural network model is put forward combined with the engineering practice of the second phase construction project of Changzhou Hengsheng Science Park. Based on the analytic hierarchy process( AHP),the building subsidence,horizontal displacement and vertical displacement at the top of retaining structure and water level are taken as the main factors affecting the surface road settlement and as the input factors of model. The results show that the combination forecasting model based on the grey neural network model and three spline interpolation has higher prediction accuracy,and it is conducively to predict and early warn the foundation pit,and effectively to ensure the safety of the foundation pit construction.
作者
孟雪
赵燕容
黄小红
徐晓
Meng Xue;Zhao Yanrong;Huang Xiaohong;Xu Xiao(School of Earth Sciences and Engineering,Hohai University;Jiangsu Chenggong Construction Technology Co.,Ltd.)
出处
《勘察科学技术》
2018年第6期39-44,共6页
Site Investigation Science and Technology
基金
国家重点研发计划"长距离调水工程建设与安全运行集成研究及应用"的课题"大埋深隧洞岩体工程特性测试技术与综合评价方法"(课题编号:2016YFC0401801)
关键词
基坑监测
地表道路沉降
灰色神经网络模型
层次分析法
预测预警
foundation pit monitoring
surface road subsidence
grey neural network model
AHP
forecasting and warning