期刊文献+

基于灰色GM(1,1)和神经网络组合模型的基坑周边地面沉降预测分析 被引量:8

Prediction and Analysis of Ground Settlement Around Foundation Pit Based on GM(1,1) and Neural Network Model
原文传递
导出
摘要 为了预测基坑周围地表道路的沉降,该文结合常州恒生科技园二期建设工程实例,提出了灰色GM(1,1)与神经网络模型组合构成灰色神经网格模型。基于层次分析法,选取建筑物沉降、围护结构顶部水平位移、竖向位移、地下水位作为影响地表道路沉降的主要因素,并将其作为模型的输入因素。研究结果表明,灰色神经网络模型结合三次样条插值建立的组合预测模型,具有较高的预测精度,有利于基坑的预测、预警,有效地保障了基坑施工的安全。 In order to predict the settlement of road surface around foundation pit,the grey neural network model combined by GM( 1,1) and neural network model is put forward combined with the engineering practice of the second phase construction project of Changzhou Hengsheng Science Park. Based on the analytic hierarchy process( AHP),the building subsidence,horizontal displacement and vertical displacement at the top of retaining structure and water level are taken as the main factors affecting the surface road settlement and as the input factors of model. The results show that the combination forecasting model based on the grey neural network model and three spline interpolation has higher prediction accuracy,and it is conducively to predict and early warn the foundation pit,and effectively to ensure the safety of the foundation pit construction.
作者 孟雪 赵燕容 黄小红 徐晓 Meng Xue;Zhao Yanrong;Huang Xiaohong;Xu Xiao(School of Earth Sciences and Engineering,Hohai University;Jiangsu Chenggong Construction Technology Co.,Ltd.)
出处 《勘察科学技术》 2018年第6期39-44,共6页 Site Investigation Science and Technology
基金 国家重点研发计划"长距离调水工程建设与安全运行集成研究及应用"的课题"大埋深隧洞岩体工程特性测试技术与综合评价方法"(课题编号:2016YFC0401801)
关键词 基坑监测 地表道路沉降 灰色神经网络模型 层次分析法 预测预警 foundation pit monitoring surface road subsidence grey neural network model AHP forecasting and warning
  • 相关文献

参考文献11

二级参考文献68

共引文献409

同被引文献76

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部