期刊文献+

耦合多目标遗传算法的数据同化方法参数优化研究 被引量:1

Research on Parameter Optimization of Data Assimilation Method Coupled with Multi-Objective Genetic Algorithms
原文传递
导出
摘要 针对影响数据同化系统性能的数据同化方法中多参数优化问题,设计了一种耦合多目标优化非支配排序遗传算法(Non-dominated Sorting Genetic Algorithms,NSGA-2)的优化框架。以Lorenz-96模型为研究对象,局地化集合转换卡尔曼滤波(Local Ensemble Transform Kalman Filter,LETKF)为实验算法,对影响其同化性能的分析膨胀因子和协方差膨胀因子进行联合优化实验。同时针对计算时间过长问题,对该框架进行并行改进。研究结果表明:该框架针对变量范围较大的参数空间,具有良好的多变量寻优效果,鲁棒性较强,并行设计节省运行时间,耦合多目标遗传算法的数据同化方法整体寻优框架设计实现简单,进一步将验证其在陆面数据同化中的应用前景。 To solve the problem of multi-parameter optimization in data assimilation method which affects the performance of data assimilation system,an optimization framework was proposedcoupled with objective optimization Non-dominated Sorting Genetic Algorithms (NSGA-2).To choose Lorenz-96 model as the research object,the Local Ensemble Transform Kalman Filter (LETKF) was used as the experimental algorithm.The analysis inflation factor and the covariance inflation factor that affect data assimilation performance were studied together in new framework.At the same time,the problem of over-long computing time was solved by paralleling the framework.The results showed that this framework had a good multivariable optimization for parameter space with large variable range and strong robustness.Parallel design could save the running time.Data assimilation coupled with multi-objective genetic algorithm and overall optimization framework design are easy to use.Further verification of its land data assimilation use were explored in the future.
作者 摆玉龙 王一朝 Bai Yulong;Wang Yizhao(College of Physics and Electrical Engineering ,Northwest Normal University ,Lanzhou 730070 ,China)
出处 《遥感技术与应用》 CSCD 北大核心 2018年第6期1056-1062,共7页 Remote Sensing Technology and Application
基金 国家自然科学基金项目(41461078 41861047) 西北师范大学科研能力提升计划团队项目(NWNU-LKQN-1706)
关键词 数据同化 多参数优化 NSGA-2 并行设计 Data assimilation Multi-parameter optimization NSGA-2 Parallel design
  • 相关文献

参考文献4

二级参考文献84

  • 1Meng, Z., and F. Zhang, 2007: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Mon. Wea. Rev., 135, 1403- 1423.
  • 2Meng, Z., and F. Zhang, 2008a: Test of an ensemble-Kahnan filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3Dvar in a real-data case study. Mort. Wea. Rev., 136, 522-540.
  • 3Meng, Z., and F. Zhang, 2008b: Test of an ensemble-Kalman filter for mesoscale and regional-scale data assimilation. Part IV: Performance over a warmseason month of June 2003. Mort. Wea. Rev., 136, 3671 -3682.
  • 4Navon, I. M., D. N. Daescu, and Z. Liu, 2005: The impact of background error on incomplete observations for 4D-Var data assimilation with the FSU GSM. Computational Science-ICCS 2005, PT 2, 3515, 837 844.
  • 5R.abier, F., J. N. Thepaut, and P. Courtier, 1998: Extended assimilation and forecast experiments with a four-dimensional variational assimilation system. Quart. J. Roy. Meteor. Soc., 124, 1861- 1887.
  • 6Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mort. Wea. Rev., 131, 1663-1677.
  • 7Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci.. 54, 1642-1661.
  • 8Talagrand, O., 1997: Assimilation of observations, an introduction. J. Meteor. Soc. Japan, 75, 191-209.
  • 9Wang, X., C. Snyder, and T. M. Hamill, 2007: On the theoretical equivalence of differently proposed ensemble- 3DVAtt hybrid analysis schemes. Mon. Wea. Rev., 135, 222-227.
  • 10Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mort. Wea. Rev., 130, 1923.

共引文献64

同被引文献27

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部