期刊文献+

随机微分方程改进的分裂步单支θ方法的强收敛性 被引量:2

STRONG CONVERGENCE OF THE IMPROVED SPLIT-STEP ONE-LEG θ METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS
原文传递
导出
摘要 本文提出了一个改进的分裂步单支θ方法,在漂移项系数满足单边Lipschitz条件下,证明了当数值方法的参数θ满足1/2≤θ≤1时,该数值方法对于这类随机微分方程是强收敛的,并在现有文献的基础上将方法的收敛阶从1/2阶提高到1阶;当0≤θ≤1/2时,若漂移项系数进一步满足线性增长条件,该数值方法也是强收敛的,收敛阶为1阶.文末的数值试验验证了理论结果的正确性. In this paper a class of methods, called improved split-step one-leg theta methods(ISSOLTM), are introduced and are shown to be convergent for SDEs with one-sided Lipschitz continuous drift coefficient if the method parameter satisfies 1/2 ≤θ≤1. At the same time, we improve the strong order from one half to one on the basis of the existing literature.For 0≤θ≤1/2, under the additional linear growth condition for the drift coefficient, the methods are also strongly convergent with the the order 1. Finally, the obtained results are supported by numerical experiments.
作者 张维 王文强 Zhang wei;Wang wenqiang(Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan 411105, China)
出处 《计算数学》 CSCD 北大核心 2019年第1期12-36,共25页 Mathematica Numerica Sinica
基金 国家自然科学基金(11571373 11671343) 湖南省教育厅重点项目
关键词 随机微分方程 单边LIPSCHITZ条件 改进的分裂步单支θ方法 强收敛性 stochastic differential equation one-sided Lipschitz condition improved split-step one-leg theta methods strong convergence
  • 相关文献

参考文献4

二级参考文献43

  • 1王文强,黄山,李寿佛.非线性随机延迟微分方程Euler-Maruyama方法的均方稳定性[J].计算数学,2007,29(2):217-224. 被引量:10
  • 2丁协平,林炎诚,姚任之.解变分不等式的三步松弛混合最速下降法[J].应用数学和力学,2007,28(8):921-928. 被引量:8
  • 3Buckwar E. Introduction to the numerical analysis of stochastic delay differential equations[J]. J. Comput. Appl. Math., 2000, 125: 297-307.
  • 4Buckwar E. One-step approximatons for stochastic functional differential equations[J]. Appl. Num. Math., 2006, 56: 667-681.
  • 5Gichman I I , Skorochod A V. Stochastic Differential Equations[M]. Russion: Naukova Dumka, Kiew, 1973.
  • 6Mao X R. Stochastic Differential Equations and Their Applications[M]. New York: Horwood Publishing, 1997.
  • 7Alcock J, Burrage K. A note on the balanced method[J]. BIT., 2006, 46: 689-710.
  • 8Milstein G, Platen E, Schurz H. Balanced implicit methods for stiff stochastic systems[J]. SIAM J. Numer. Anal., 1998, 35: 1010-1019.
  • 9Saito Y and Mitsui T. Stability analysis of numeric schemes for stochastic differential equations[J]. SIAM J. Numer. Anal., 1996, 33:2254-2267.
  • 10Zhang H M, Gan S Q. Mean square convergence of one-step methods for neutral stochastic differential delay equations[J]. Appl. Math. Comput., 2008, 204: 884-890.

共引文献14

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部