摘要
本文提出了一个改进的分裂步单支θ方法,在漂移项系数满足单边Lipschitz条件下,证明了当数值方法的参数θ满足1/2≤θ≤1时,该数值方法对于这类随机微分方程是强收敛的,并在现有文献的基础上将方法的收敛阶从1/2阶提高到1阶;当0≤θ≤1/2时,若漂移项系数进一步满足线性增长条件,该数值方法也是强收敛的,收敛阶为1阶.文末的数值试验验证了理论结果的正确性.
In this paper a class of methods, called improved split-step one-leg theta methods(ISSOLTM), are introduced and are shown to be convergent for SDEs with one-sided Lipschitz continuous drift coefficient if the method parameter satisfies 1/2 ≤θ≤1. At the same time, we improve the strong order from one half to one on the basis of the existing literature.For 0≤θ≤1/2, under the additional linear growth condition for the drift coefficient, the methods are also strongly convergent with the the order 1. Finally, the obtained results are supported by numerical experiments.
作者
张维
王文强
Zhang wei;Wang wenqiang(Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan 411105, China)
出处
《计算数学》
CSCD
北大核心
2019年第1期12-36,共25页
Mathematica Numerica Sinica
基金
国家自然科学基金(11571373
11671343)
湖南省教育厅重点项目