期刊文献+

基于时空适应反射率融合模型的林区遥感应用研究 被引量:1

Research on the Application of Remote Sensing in Forestry District Based on STARFM
原文传递
导出
摘要 高空间、时间分辨率遥感数据在林业遥感变化监测方面具有重要的作用,然而,对于特定传感器获取的遥感影像在空间和时间分辨率上存在着不可调和的矛盾。本文针对神农架林区多云雾高时空分辨率数据缺乏的现状,提出了一套区域尺度高时空分辨率植被覆盖度数据构建方法。首先,利用LandSat8数据进行预处理,得到高分辨率的NDVI数据,并将MODIS NDVI数据进行重投影、重采样等预处理;其次,利用STARFM模型进行高分辨NDVI预测,利用评价因子选择最佳算法参数,并利用二分模型计算植被覆盖度;再次,以LandSat8获取的真实数据与预测数据进行精度评价;最后,选取黑龙江小兴安岭西北部林区生长季数据进行验证试验。结果表明:利用该方法可以在神农架林区获得预测日期的较好的NDVI及植被覆盖度,精度分别为90.8%、82.60%。此外,通过验证试验,可以获得同年生长季小兴安岭林场较好的NDVI以及植被覆盖度,精度分别达到92.86%、88.65%。 High spatial and temporal resolution remote sensing data plays an important role in forestry remote sensing change monitoring,However,there is an irreconcilable contradiction between spatial and temporal resolution of remote sensing images acquired by aparticular sensor.Focusing on the cloudy and foggy region lacked of remote sensing data with highspatial and temporal resolution in Shennongjia forest district,a method of constructing vegetation fractional coverage with high spatial and temporal resolution,on region scale has been proposed,in this paper.Firstly,obtained the high resolution NDVI data by preprocessing LandSat8 data,and preprocessed MODIS NDVI data,including re projection,Resampling,etc;Secondly,Used the STARFM model to predict the high resolution NDVI,then selected the best algorithm parameters by evaluation factors,and calculated the vegetation fractional coverage based on Binary Pixel Model;After that,evaluated the accuracy between the real data and forecast data.Last but not least,selected the growth season data of Northwest Xingan ridge in Heilongjiang to validated the experiment.The results show that:by using this method,the better NDVI and vegetation fractional coverage can be obtained in Shennongjia forest district,with the accuracies of 90.8%and 82.60%respectively.In addition,through the verification test,we can get better NDVI and vegetation fractional coverage of the small Lesser Khingan Range in the same growing season,and the precision reaches 92.86%,88.65%.
作者 陈艳 张旭 郭颖 陈晓光 CHEN Yan;ZHANG Xu;GUO Ying
出处 《林业科技通讯》 2019年第1期3-9,共7页 Forest Science and Technology
基金 中央级公益性科研院所基本科研业务费专项资金(CAFYBB2016SY020)
关键词 高时空分辨率 STARFM 植被覆盖度 神农架林区 higher spatial and temporal resolution Spatial and Temporal Adaptive Reflectance Fusion Model(STARFM) vegetation fractional coverage Shennongjia Forestry District
  • 相关文献

参考文献6

二级参考文献83

  • 1郭文静,李爱农,赵志强,王继燕.基于AVHRR和TM数据的时间序列较高分辨率NDVI数据集重构方法[J].遥感技术与应用,2015,30(2):267-276. 被引量:9
  • 2秦伟,朱清科,张学霞,李文华,方斌.植被覆盖度及其测算方法研究进展[J].西北农林科技大学学报(自然科学版),2006,34(9):163-170. 被引量:185
  • 3杨勤科,罗万勤,马宏斌,梁伟.区域水土流失植被因子的遥感提取[J].水土保持研究,2006,13(5):267-268. 被引量:17
  • 4朱孝林.高时空分辨率遥感数据生成技术研究[D].北京:北京师范大学,2010.
  • 5Junchang Ju, David P. Roy. The availability of cloud - free Landsat ETM + data over the conterminous United States and globally [ J ]. Remote Sensing of Environment, 2008,112 (3) :1 196 - 1 211.
  • 6Michael A. Wulder, Joanne C. White, Jeffrey G. Masek, et al. Continuity of Landsat observations: Short term con- siderations [ J ]. Remote Sensing of Environment, 2011,115 (2) :747 -751.
  • 7Thomas Hilker, Michael A. Wulder, Nicholas C. Coops,et al. A new data fusion model for high spatial - and tem- poral - resolution mapping of forest disturbance based on Landsat and MODIS [ J ]. Remote Sensing of Environment, 2009,113(8) :1 613 - 1 627.
  • 8Xiaolin Zhu, Jin Chen, Feng Gao, et al. An enhanced spa- tial and temporal adaptive reflectance fusion model for com- plex heterogeneous regions [ J] Remote Sensing of Envi- ronment,2010,114( 11 ) :2 610 -2 623.
  • 9David P. Roy, Junchang Ju, Philip Lewis et al. Multi - temporal MODIS - Landsat data fusion for relative radio- metric normalization, gap filling, and prediction of Landsat data [ J ]. Remote Sensing of Environment,2008,112 (6) : 3 112-3 130.
  • 10Hugo C, Paulo G, Mario C. Contribution of multispectral and multitemporal information from MODIS images to land cover classification[J]. Remote Sensing of Environ- ment, 2008,112:986-997.

共引文献39

同被引文献15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部