摘要
[目的/意义]提出一个药物不良反应本体的半自动构建方法,构建的细粒度药物不良反应本体为利用社交媒体挖掘潜在的药物不良反应信号提供语义资源库。[方法/过程]首先,采用业务层次和语言层次相分离的设计理念,将用户在社交媒体中评论的药物不良反应表示成"对象要素-属性要素-描述概念"的形式。细粒度体现在社交媒体用户对药物同一不良反应描述概念表达的多样性上。然后,基于深度学习的思想,利用基于word2vec的描述概念候选词抽取算法自动地抽取出更多的描述概念候选词构建本体。[结果/结论]以糖尿病药物的建模实例表明,提出的细粒度药物不良反应本体的半自动构建方案,提高了本体构建的智能化水平,构建的细粒度药物不良反应本体为利用社交媒体挖掘潜在的药物不良反应信号提供语义资源库。
[Purpose/significance] The semi-automatic construction method for the adverse drug reaction ontology is proposed. The constructed fine-grained ADR ontology provides a semantic resource library for exploiting potential ADR signals by using social media. [Method/process] Firstly, based on the design concept that separates the business level and language level, this paper expressed the adverse drug reaction discussed in the network health community in the form of "object-attribute-description". The fine granularity is reflected in the diversity of describing the same adverse drug reaction. Then, based on the idea of deep learning, the word2vec-based description concept candidate word extraction algorithm is used to automatically extract more description concept to construct ontology. [Result/conclusion] The modeling example shows that the fine-grained ADR ontology construction scheme proposed in this paper can improve the efficiency and intelligence level of ontology construction. At the same time, the constructed fine-grained drug adverse reaction ontology provides a semantic resource library for exploiting potential ADR signals by using social media.
作者
魏巍
傅维刚
Wei Wei;Fu Weigang(Big Data Institute,Zhongnan University of Economics and Law,Wuhan 430074;School of Information Management,Wuhan University,Wuhan 430072)
出处
《图书情报工作》
CSSCI
北大核心
2019年第3期108-114,共7页
Library and Information Service
关键词
本体构建
ADR
社交媒体
ontology construction
ADR
social media