期刊文献+

Bohm’s approach to quantum mechanics: Alternative theory or practical picture? 被引量:1

原文传递
导出
摘要 Since its inception Bohmian mechanics has been generally regarded as a hidden-variable theory aimed at providing an objective description of quantum phenomena. To date, this rather narrow conception of Bohm’s proposal has caused it more rejection than acceptance. Now, after 65 years of Bohmian mechanics, should still be such an interpretational aspect the prevailing appraisal? Why not favoring a more pragmatic view, as a legitimate picture of quantum mechanics, on equal footing in all respects with any other more conventional quantum picture? These questions are used here to introduce a discussion on an alternative way to deal with Bohmian mechanics at present, enhancing its aspect as an efficient and useful picture or formulation to tackle, explore, describe and explain quantum phenomena where phase and correlation (entanglement) are key elements. This discussion is presented through two complementary blocks. The first block is aimed at briefly revisiting the historical context that gave rise to the appearance of Bohmian mechanics, and how this approach or analogous ones have been used in different physical contexts. This discussion is used to emphasize a more pragmatic view to the detriment of the more conventional hidden-variable (ontological) approach that has been a leitmotif within the quantum foundations. The second block focuses on some particular formal aspects of Bohmian mechanics supporting the view presented here, with special emphasis on the physical meaning of the local phase field and the associated velocity field encoded within the wave function. As an illustration, a simple model of Young’s two-slit experiment is considered. The simplicity of this model allows to understand in an easy manner how the information conveyed by the Bohmian formulation relates to other more conventional concepts in quantum mechanics. This sort of pedagogical application is also aimed at showing the potential interest to introduce Bohmian mechanics in undergraduate quantum mechanics courses as a working tool rather than merely an alternative interpretation.
作者 A. S. Sanz
机构地区 Department of Optics
出处 《Frontiers of physics》 SCIE CSCD 2019年第1期75-89,共15页 物理学前沿(英文版)
  • 相关文献

参考文献3

二级参考文献3

共引文献18

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部