期刊文献+

Estimation of wind speeds inside Super Typhoon Nepartak from AMSR2 low-frequency brightness temperatures

原文传递
导出
摘要 Accurate estimations of typhoon-level winds are highly desired over the westem Pacific Ocean.A wind speed retrieval algorithm is used to retrieve the wind speeds within Super Typhoon Nepartak (2016)using 6.9- and 10.7-GHz brightness temperatures from the Japanese Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor on board the Global Change Observation Mission-Water 1 (GCOM-Wl)satellite.The results show that the retrieved wind speeds clearly represent the intensification process of Super Typhoon Nepartak.A good agreement is found between the retrieved wind speeds and the Soil Moisture Active Passive wind speed product.The mean bias is 0.51 m/s,and the root-mean-square difference is 1.93 m/s between them.The retrieved maximum wind speeds are 59.6 m/s at 04:45 UTC on July 6 and 71.3 m/s at 16:58 UTC on July 6.The two results demonstrate good agreement with the results reported by the China Meteorological Administration and the Joint Typhoon Warning Center.In addition,Feng-Yun 2G (FY-2G) satellite infrared images,Feng-Yun 3C (FY-3C)microwave atmospheric sounder data,and AMSR2 brightness temperature images are also used to describe the development and structure of Super Typhoon Nepartak.
出处 《Frontiers of Earth Science》 SCIE CAS CSCD 2019年第1期124-131,共8页 地球科学前沿(英文版)
基金 the National Natural Science Foundation of China (CJrant No.61501433).
  • 相关文献

参考文献2

二级参考文献42

  • 1Wentz, F. J., P. D. Ashcroft, and C. L. Gentemann, 2001: Post-launch calibration of the TMI microwave radiometer, IEEE Trans. Geosci. Remote Sens., 39, 415-422.
  • 2Wentz, F. J., C. Gentemann, and P. Ashcroft, 2003: Onorbit calibration of AMSR-E and the retrieval of ocean products. 83rd AMS Annual Meeting, American Meteorological Society, Long Beach, CA.
  • 3Yan, B., and F. Weng, 2004: Rain and cloud water paths derived from Aqua AMSR-E measurements. 13th Conference on Satellite Meteorology and Oceanography, September 20-23, Norfolk, VA.
  • 4Atkinson, G. D., and C. R. Holliday, 1977: Tropical cyclone minimum sea level pressure maximum sustained wind relationship for the western north Pacific. Mon. Wea. Rev., 105, 421-427.
  • 5Brown, O. B., J. W. Brown, and R. H. Evans, 1985: Calibration of advanced very high resolution radiometer infrared observations. J. Geophys. Res., 90, 1667- 1677.
  • 6Chelle, L. G., F. J. Wentz, C. A. Mears, and D. K. Smith, 2004: In situ validation of Tropical Rainfall Measuring Mission microwave sea surface temperatures. J. Geophys. Res., 109, C04021, doi: 10.1029/2003JC002092.
  • 7Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: implications with respect to intensity change. Mon. Wea. Rev., 131, 1783-1796.
  • 8DeMaria, M., and J. Kaplan, 1996: Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Climate, 7, 1324-1334.
  • 9Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 42, 585-604.
  • 10Emery, W. J., Y. Yu, G. A. Wick, P. Schluessel, and R. W. Reynolds, 1994: Correcting infrared satellite estimates of sea surface temperature for atmospheric water vapor attenuation. J. Geophys. Res., 99, 5219- 5236.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部