期刊文献+

退火时间对低碳超细晶粒钢组织和性能的影响

Effect of Annealing Time on Microstructure and Properties of Low Carbon Ultrafine Grain Steel
下载PDF
导出
摘要 对淬火后组织为板条马氏体的低碳钢板进行了4道次冷轧(累计相对压下量为50%),随后在550℃进行不同时间的退火处理,研究超细晶粒低碳钢的制备。结果表明,随着退火时间的延长,冷轧板条马氏体逐步发生回复、再结晶和晶粒长大,并且晶粒长大速度逐渐加快。在30 min内退火处理时,细小的纳米尺寸碳化物不断析出,钉扎再结晶晶粒晶界,有效抑制了再结晶晶粒的长大。550℃退火30 min得到平均晶粒尺寸为326 nm的超细晶粒组织,其抗拉强度为867 MPa,总伸长率为16.7%。随着退火时间进一步延长,再结晶晶粒发生长大,同时碳化物明显粗化。 The low carbon steel plate with lath martensite after quenching was subjected to cold rolling of 4 passes(the cumulative relative reduction of 50%). Then it was annealed at 550 ℃ for different time, and preparation of ultrafine grain low carbon steel was studied. The results show that with the extension of annealing time, the cold-rolled lath martensite produces the recovery, recrystallization and grain growth, and the grain growth rate accelerates gradually. When annealing treatment is within 30 min, tiny nano-scale carbides precipitate continuously, and the recrystallized grain boundaries are pinned, which effectively inhibits the growth of recrystallized grains. After annealing at 530℃ for 30 min, the ultrafine-grained microstructure with the average grain size of 326 nm is obtained. Under this condition, the tensile strength is 867 MPa, and total elongation is16.7%. With the further extension of annealing time, recrystallization grains grow up, at the same time, the carbides coarsen obviously.
作者 梁伟成 徐光 田俊羽 袁清 LIANG Weicheng;XU Guang;TIAN Junyu;YUAN Qing(State Key Laboratory of Refractories and Metallurgy,Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education,Wuhan University of Science and Technology,Wuhan 430081,China)
出处 《热加工工艺》 CSCD 北大核心 2018年第24期193-197,共5页 Hot Working Technology
基金 国家自然科学基金面上项目(51274154).
关键词 低碳钢 超细晶粒 退火时间 再结晶 碳化物 low carbon steel ultrafine grain annealing time recrystallization carbide
  • 相关文献

参考文献4

二级参考文献33

  • 1[1]Mishra R S,Valiev R Z,Mukherjee A K.The observation of tensile superplasticity in nanocrystalline materials[J].Nanostruct Mater,1997,9:473~476.
  • 2[2]Lu K.Nanocrystalline metals crystallized from amorphous solids:nanocrystallization,structure and properties[J].Mater Sic Eng,1996,R16.
  • 3[3]Bonetti E,Bianco L Del,Pasquini L,et al.Thermal evolution of ball milled nanocrystalline iron[J].Nanostruct Mater,1999,12:685~688.
  • 4[4]Jain M,Christman T.Processing of submicron grain 304 stainless steel[J].J Mater Res,1996,11(11):2677~2680.
  • 5[5]Valiev R Z,Islamgaliev R K,Alexandrov I V.Bulk nanostructured materials from severe plastic deformation[J].Progr Mat Sci,2000,45:103~189.
  • 6[6]Shin Dong Hyuk,Kim Byung Cheol,Kim Yong Seog,et al.Microstructural evolution in a commercial low carbon steel by equal channel angular pressing[J].Acta Mater,2000,48:2247~2255.
  • 7[7]Saito Y,Tsuji N,Utsunamiya H,et al.Ultra-fine grained bulk aluminum produced by accumulative roll-bonding(ARB)process[J].Scripta Materialia,1998,39(9):1221~1227.
  • 8[8]Stolyarov V V,Zhu Y T,Lowe T C,et al.Microstructure and properties of pure Ti processed by ECAP and cold extrusion[J].Mater Sci Eng,2001,A303:82~89.
  • 9[9]Stolyarov V V,Zhu Y T,Alexandrov I V,et al.Influence of ECAP routes on the microstructure and properties of pure Ti[J].Mater Sci Eng,2001,A299:59~67.
  • 10[10]Howe A A.Ultrafine grained steels:industrial prospects[J].Mater Sci Technol,2000,16:1264~1266.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部