摘要
设φ(n),S(n)分别表示正整数n的Euler函数和Smarandache函数,利用初等的方法和技巧,依据Smarandache函数计算公式,给出k的方程φ(p~αm)=S(p^(ακ))的所有解,其中p为素数,α,m为正整数且gcd(m,p)=1,由此得到方程φ(n)=S(n^k)的所有解(n,k)进而确定了满足条件S(n)|σ(n)的全部正整数n.最后,根据莫比乌斯变换反演定理证明了方程φ(n)=∑_(d|n)S(d)仅有两个解,分别为n=2~5和n=3×2~5.
Let φ(n), S(n) be the Euler function and the Smarandache function of the positive integer n, respectively. Based on elementary methods and techniques, according to the algorithm formula of the Smarandache function, all solutions of the equationφ(pαm) = S(pακ) are given, where p is a prime, a and m are both positive integers,and gcd(m,p) = 1. And then we get the solutions of the equation φ(n) = S(nk). Furthermore, all positive integers n satisfying the condition S(n)|σ(n) are determined.At last, basing on the Mobius transformation inversion theorem, we prove that the equation φ(n) =∑d|nS(d) has only two solutions,namely,n= 25 and n = 3 × 25.
作者
白海荣
廖群英
Hai Rong BAI;Qun Ying LIAO(Institute of Mathematics and Software Science,Sichuan Normal University, Chengdu 610066,P.R.China)
出处
《数学学报(中文版)》
CSCD
北大核心
2019年第2期247-254,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11401408)
四川省科技厅资助项目(2016JY0134)