摘要
本文讨论了Fock空间上以径向函数和拟齐次函数为符号的Toeplitz算子的代数性质,给出了两个以径向函数为符号的Toeplitz算子的积仍为Toeplitz算子的充分必要条件,并且研究了以拟齐次函数为符号的Toeplitz算子的交换性.
We discuss some algebraic properties of Toeplitz operators with a class of radial and quasi-homogeneous symbols on the Fock space of the complex plane. We give necessary and sufficient conditions for the product of two Toeplitz operators with radial symbols to be a Toeplitz operator, and study the zero-product problem of several such Toeplitz operators. Furthermore, the corresponding commuting problem of Toeplitz operators with quasi-homogeneous symbols is studied.
作者
黄穗
Sui HUANG(School of Mathematical Sciences,Chongqing Normal University, Chongqing 401331,P.R.China)
出处
《数学学报(中文版)》
CSCD
北大核心
2019年第2期345-352,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11501068)
重庆市教委科研资助项目(KJ1600302)