摘要
数据的增长趋势随着互联网的发展达到TB级,传统的审计方式不再适用,应用数据挖掘技术不可避免。针对医院审计,根据当前HIS系统的特点,使用数据挖掘技术和审计实践结合来分析实际数据。聚类分析中可伸缩期待最大化(SEM)算法用于分析数据特征,查找潜在的规律,并为审计人员的决策提供数据支持。
The growth trend of data has reached terabytes with the development of the Internet. The traditional auditing method is no longer applicable, and application data mining technology is inevitable. For hospital audits, based on the characteristics of current HIS systems, data mining techniques and audit practices are used to analyze actual data. The scalable expectation maximization(SEM) algorithm in cluster analysis is used to analyze data features, find potential patterns, and provide data support for auditors’ decisions.
作者
董银霜
李宗林
周彬
DONG Yin-shuang;LI Zong-lin;ZHOU Bin(School of Computer,Anhui University of Seience and Technology,Huainan 23200.China;Huainan Audit Bureau,Huainan 232001,China)
出处
《电脑知识与技术》
2018年第12期1-3,共3页
Computer Knowledge and Technology